K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 9 2021

1.

\(y'=x^2-6x+5=0\Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

Dấu của y' trên trục số:

undefined

Hàm đồng biến trên các khoảng \(\left(-\infty;1\right)\) và \(\left(5;+\infty\right)\)

Hàm nghịch biến trên \(\left(1;5\right)\)

3.

TXĐ: \(D=R\backslash\left\{2\right\}\)

\(y'=\dfrac{-5}{\left(x-2\right)^2}< 0;\forall x\in D\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;2\right)\) và \(\left(2;+\infty\right)\)

NV
17 tháng 9 2021

4.

\(y'=4x^3+4x=4x\left(x^2+1\right)=0\Rightarrow x=0\)

Dấu của y':

undefined

Hàm đồng biến trên \(\left(0;+\infty\right)\)

Hàm nghịch biến trên \(\left(-\infty;0\right)\)

6.

Từ đồ thị ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)

Hàm nghịch biến trên \(\left(-1;1\right)\)