K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

=>BDEC là hìnhthang

mà góc B=góc C

nên BDEC là hình thang cân

b: Xét hình thang BDEC có

M,N lần lượt là trung điểm của DB và EC

nên MN là đường trung bình

=>MN=(DE+BC)/2

=>DE+4=6

=>DE=2cm

c: Xét tứ giác DECH có

DE//CH

DH//EC

Do đó: DECH là hình bình hành

SUy ra: DH=EC

Xét ΔDBH có MK//BH

nên DK/DH=DM/DB=1/2

=>K là trung điểm của DH

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

=>BDEC là hìnhthang

mà góc B=góc C

nên BDEC là hình thang cân

b: Xét hình thang BDEC có

M,N lần lượt là trung điểm của DB và EC

nên MN là đường trung bình

=>MN=(DE+BC)/2

=>DE+4=6

=>DE=2cm

c: Xét tứ giác DECH có

DE//CH

DH//EC

Do đó: DECH là hình bình hành

SUy ra: DH=EC

Xét ΔDBH có MK//BH

nên DK/DH=DM/DB=1/2

=>K là trung điểm của DH

31 tháng 12 2021

a: Xét ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Do đó: DE//BC

hay BDEC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BDEC là hình thang cân

28 tháng 9 2020

Thịnh có 15 hòn bi. Số bi của Thịnh hơn Khánh là 3 hòn. Nếu số bi của Huy thêm 4 hòn thì sẽ bằng số bi của Khánh. Hỏi cả ba bạn có bao nhiêu hòn bi.

28 tháng 9 2020

liên quan vậy bạn

31 tháng 3 2020

1.

a) Xét ΔABC có \(\frac{AD}{AB}=\frac{AE}{AC}\left(gt\right)\) => DE//BC

=> \(\frac{AD}{BD}=\frac{AE}{EC}\) (đ/lí Ta-lét)

b) Ta có: AB = AD + BD = 2 + 1 = 3 (cm)

Xét ΔABC có DE//BC => \(\frac{AD}{AB}=\frac{DE}{BC}=\frac{2}{3}\) (hệ quả đ/lí Ta-lét)

=> BC = \(\frac{AB.DE}{AD}=\frac{3.3}{2}=4,5\left(cm\right)\)

2.

a) Ta có: BD = AB - AD = 11 - 4 = 7 (cm)

Xét ΔABC có DE//BC (gt), theo đ/lí Ta-lét có: \(\frac{AE}{EC}=\frac{AB}{BD}=\frac{4}{7}\)

b) Ta có: \(\frac{AE}{EC}=\frac{4}{7}\left(cmt\right)\) => \(\frac{AE}{EC-AE}=\frac{4}{7-4}\Rightarrow\frac{AE}{1,5}=\frac{4}{3}\)

=> AE = \(\frac{4.1,5}{3}=2\left(cm\right)\)

Xét ΔABC có DE//BC (gt) => \(\frac{AD}{AB}=\frac{DE}{BC}\) (hệ quả đ/lí Ta-lét)

=> DE = \(\frac{AD.BC}{AB}=\frac{4.8}{11}=\frac{32}{11}\left(cm\right)\)

3.

a) Xét ΔOCD có AB//CD (gt), theo đ/lí Ta-lét có: \(\frac{OC}{OA}=\frac{OD}{OB}\)

=> OA.OD = OB.OC

b) Do \(\frac{OC}{OA}=\frac{OD}{OB}\)(cmt) => \(\frac{OC}{OA+OC}=\frac{OD}{OB+OD}\Rightarrow\frac{OC}{AC}=\frac{OD}{BD}\) (1)

Do MN//AB => OM//AB; ON//AB

Xét ΔABD có OM//AB (cmt) => \(\frac{OM}{AB}=\frac{OD}{BD}\) (hệ quả đ/lí Ta-lét) (2)

Xét ΔABC có ON//AB (cmt) => \(\frac{ON}{AB}=\frac{OC}{AC}\) (hệ quả đ/lí Ta-lét) (3)

Từ (1), (2), (3) => \(\frac{OM}{AB}=\frac{ON}{AB}\) => OM = ON

26 tháng 2 2018

a) xét 2 tam giác vuông ABM VÀ ACM, có: 

AB=AC         ( ABC CÂN)

góc b = góc c  (___nt____)

BM=CM ( BD=EC; DM=ME)

=> TAM GIÁC ABM = T/GIÁC ACM

=>góc amb = góc amc (2 góc tuog ứng)

mà amb và amc là 2 góc kề bù 

=> amb = amc = 90 độ hay am vuông góc với bc

b) ta có ab = ac vì t/giác abc cân tại a

xét t/giác adm và t/giác ame, có

am chung

góc amd=góc ame (cmt)

dm=me ( gt)

=> t/giác ADM = t/giác AME

=> AD=AE ( 2 cạnh tương ứng )

18 tháng 8 2019

A B D M E C

a, \(\Delta AMB=\Delta AMC(c.c.c)\Rightarrow\widehat{AMB}=\widehat{AMC}\)

Ta lại có : \(\widehat{AMB}+\widehat{AMC}=180^0\)=> \(\widehat{AMB}=90^0\)

Vậy \(AM\perp BC\)

b, Hình chiếu MD = ME nên đường xiên AD = AE . Hình chiếu MD < MB nên đường xiên AD < AB . Ta có : AD < AB = AC

a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có

AB=AC(ΔABC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(hai cạnh tương ứng)

Ta có: AD=AE(cmt)

nên A nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MD=ME(M là trung điểm của DE)

nên M nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của DE

\(\Leftrightarrow AM\perp DE\)

hay \(AM\perp BC\)(đpcm)