Bài 5. Tìm các số tự nhiên x, y sao cho:
a, và x < 70.
b, y thuộc Ư(50) và y > 5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Lần lượt nhân 7 với 0; 1; 2; 3; 4; 5; … ta được các bội của 7 là: 0; 7; 14; 21; 28; 35; 42; 49; 56; 63; 70;…
Ta được B(7) = {0; 7; 14; 21; 28; 35; 42; 49; 56; 63; 70;…}
Mà x ∈ B(7) và x < 70 nên x ∈ {0; 7; 14; 21; 28; 35; 42; 49; 56; 63}.
b) Lần lượt chia 50 cho các số từ 1 đến 50, ta thấy 50 chia hết cho 1; 2; 5; 10; 25; 50 nên
Ư(50) = {1; 2; 5; 10; 25; 50}
Mà y ∈ Ư(50) và y > 5 nên y ∈ {10; 25; 50}.
a) Nhân 7 với 0; 1; 2; 3; 4; 5; … ta được các bội của 7 là: 0; 7; 14; 21; 28; 35; 42; 49; 56; 63; 70;…
Ta được B(7) = {0; 7; 14; 21; 28; 35; 42; 49; 56; 63; 70;…}. Mà x ∈ B(7) và x < 70
Vậy x ∈ {0; 7; 14; 21; 28; 35; 42; 49; 56; 63}.
b) Chia 50 cho các số từ 1 đến 50, ta thấy 50 chia hết cho 1; 2; 5; 10; 25; 50 nên
Ư(50) = {1; 2; 5; 10; 25; 50}. Mà y ∈ Ư(50) và y > 5
Vậy y ∈ {10; 25; 50}.
Bài 4:
1,
\(Ư\left(250\right)=\left\{1;2;5;10;25;50;125;250\right\}\)
Các số có hai chữ số thuộc Ư(250) là 10;25;50
2,
\(B\left(11\right)=\left\{0;11;22;33;44;55;66;77;88;99;110;121;132;143;154;165;....\right\}\)
Các số có hai chữ số thuộc về B(11) là 11;22;33;44;55;66;77;88;99
Bài 3:
B(3) là các số chia hết cho 3, dấu hiệu là tổng các chữ số của số đó là một số chia hết cho 3, bao gồm: 126; 201; 312; 345; 501; 630
B(5) là các số chia hết cho 5, dấu hiệu tận cùng các số đó là 0 hoặc 5, bao gồm: 125; 205; 220; 345; 595; 630; 1780
\(B\left(7\right)=\left\{0;7;14;21;28;35;42;49;56;63;70;...\right\}\)
\(\Rightarrow x\in\left\{0;7;14;21;28;35;42;49;56;63\right\}\) (thỏa mãn đề bài)
b) \(Ư\left(50\right)=\left\{1;2;5;10;25;50\right\}\)
\(\Rightarrow x\in\left\{10;25;50\right\}\) (thỏa mãn đề bài)
a)B(11)={11;22;33;44}
b)Ư(33)={1;3}
c)B(11) Ư(33)={11;33}
Để 59a chia hết cho 2 \(\Rightarrow\)a\(\varepsilon\){0,2,4,6,8}
b,Để 59a chia hết cho 5\(\Rightarrow a\varepsilon\) {0,5}
c,Để 59a chia hết cho 3 \(\Rightarrow5+9+a⋮3\)
\(\Rightarrow a\varepsilon\){1,4,7}
d,Để 59a chia hết cho 9\(\Rightarrow5+9+1⋮9\)
\(\Rightarrow a\varepsilon\)=4