Cho tam giác ABC vuông tại A (AB>AC), đường cao AH. Kẻ HD vuông góc với AB, Kẻ HE vuông góc với AC. kẻ ak vuông góc với de Gọi i là giao điểm của AH và DE.và \(AI^2=AD.AE\)
a, Chứng minh rằng: \(AI^2=DE.AE\)
b, TÍNH góc AIK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cm:a) Xét tứ giác ADHE có \(\widehat{A}=\widehat{ADH}=\widehat{HEA}=90^0\)
=> ADHE là hình chữ nhật
đt DE cắt đt AH tại O
=> OA = OE
b) Ta có: OA = OE => t/giác AOE cân tại O => \(\widehat{OAE}=\widehat{OEA}\) hay \(\widehat{HAC}=\widehat{DEA}\)
Ta lại có: t/giác ABC vuông tại A => \(\widehat{B}+\widehat{C}=90^0\)
t/giác AHC vuông tại A => \(\widehat{HAC}+\widehat{C}=90^0\)
=> \(\widehat{B}=\widehat{HAC}\)
mà \(\widehat{HAC}=\widehat{DEA}\)
=> \(\widehat{ABC}=\widehat{AED}\)(đpcm)
c) Gọi K là giao điểm của AI và DE
Xét t/giác ABC vuông tại A có AI là đường trung tuyến (BI = IC)
=> AI = IB = IC = 1/2BC
=> t/giác AIC cân tại I
=> \(\widehat{IAC}=\widehat{C}\) hay \(\widehat{KAE}=\widehat{C}\)
Ta có: \(\widehat{B}+\widehat{C}=90^0\)
mà \(\widehat{B}=\widehat{KEA}\) (cmt); \(\widehat{C}=\widehat{KAE}\)(Cmt)
=> \(\widehat{KAE}+\widehat{KEA}=90^0\)
Xét t/giác AKE có \(\widehat{KAE}+\widehat{KEA}=90^0\) => \(\widehat{AKE}=90^0\)
=> AI \(\perp\)DE
a) Xét tứ giác ADHE
Ta có: góc A=900(gt)
góc ADH=900(gt)
góc EHD=900(gt)
=>tứ giác ADHE là hcn
=>AH=DE(đpcm)
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
=>AH cắt DE tại trung điểm của mỗi đường và AH=DE
=>OA=OE
b: AD*AB=AH^2
AE*AC=AH^2
Do đó: AD*AB=AE*AC
=>AD/AC=AE/AB
=>ΔADE đồng dạng với ΔACB
a) Vì AI^2=AD.AE nên để chứng minh AI^2=DE.AK ta chứng minh AD.AE=DE.AK bằng cách chứng minh hai tam giác ADE và KAE đồng dạng.
b) Trong tam giác vuông AIK có sinAIK = AK/AI = AI/DE ( theo đẳng thức ở câu a)
Mà AI là đường trung tuyến ứng với cạnh huyền nên AI = DE/2
Do đó sinAIK = 1/2 suy ra góc AIK bằng 30 độ.
a: BC=BH+CH
=2+8
=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH=\sqrt{2\cdot8}=4\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)
b: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>DE=AH
c: ΔHDB vuông tại D
mà DM là đường trung tuyến
nên DM=HM=MB
\(\widehat{EDM}=\widehat{EDH}+\widehat{MDH}\)
\(=\widehat{EAH}+\widehat{MHD}\)
\(=90^0-\widehat{C}+\widehat{C}=90^0\)
=>DE vuông góc DM
a) Vì HD vuông góc với AB
=> HDB = HDA = 90 độ
Mà BAC = 90 độ (gt)
=> BAC = BDH = 90 độ
Mà 2 góc này ở vị trí đồng vị
=> DH //AE
=> DHEA là hình thang
Mà HE vuông góc với AC
=> HEA = 90 độ
=> HEA = BAC = 90 độ
=> DHEA là hình thang cân
=> DE = AH ( hình thang cân hai đường chéo bằng nhau)
=> dpcm
a: Xét tứ giác ADHE co
góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
b: IO//AC
AC vuông góc HE
=>IO vuông góc HE
mà ΔOEH cân tại O
nên góc EOI=góc HOI
Xét ΔEOI và ΔHOI có
OE=OH
góc EOI=góc HOI
OI chung
Do đó: ΔEOI=ΔHOI
=>góc EIO=góc HIO
=>IO là phân giác của góc EIH
Theo đkđb thì $AI^2=AD.AE$. Vì vậy, nếu muốn $AI^2=DE.AE$ thì $AD=DE$ (điều này vô lý vì $AD<DE$ theo tính chất cạnh huyền trong tam giác vuông.
Hình vẽ: