So sánh A và B :
A=\(\frac{2009\cdot2009+2008}{2009\cdot2009+2009}\)
B =\(\frac{2009\cdot2009+2009}{2009\cdot2009+2010}\)
giúp mk nhe ai xong đầu tiên mk tick giải rõ ràng mk cần gấp chiều mai mk đi học rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x=2009\)
\(A=2009^8-2010\cdot2009^7+2010\cdot2009^6-2010\cdot2009^5+...+2010\cdot2009^0\)
\(\Leftrightarrow A=x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-\left(x+1\right)x^5+...+\left(x+1\right)x^0\\ \Leftrightarrow A=x^8-x^8-x^7+x^7+x^6-x^6-x^5+...-x^2-x^1+x^1+x^0\)
\(\Leftrightarrow A=x^0\\ \Leftrightarrow A=1\)
a) \(A=1-\frac{1}{2008.2009}\) ; \(B=1-\frac{1}{2009.2010}\)
Vì \(\frac{1}{2008.2009}>\frac{1}{2009.2010}\) nên A < B
mik làm câu A thôi nha
ta có :
1 - 2009/2010 = 1/2010
1 - 2010/2011 = 1/2011
Phần bù nào bé thì phân số đó lớn .
Vì 1/2010 > 1/2011
Nên 2009/2010 > 2010/2011
Ta thấy hiệu giữa mẫu số và tử số của hai phân số bằng nhau ( = 1 )
Để so sánh hai phân số, ta so sánh các hiệu.
\(1-\frac{2009}{2010}\)và \(1-\frac{2010}{2011}\)
Ta có :
\(1-\frac{2009}{2010}=\frac{2010}{2010}-\frac{2009}{2010}=\frac{1}{2010}\)
\(1-\frac{2010}{2011}=\frac{2011}{2011}-\frac{2010}{2011}=\frac{1}{2011}\)
Ta thấy :
\(\frac{1}{2010}>\frac{1}{2011}\)
Hay :
\(1-\frac{2009}{2010}>1-\frac{2010}{2011}\)
Vậy \(\frac{2009}{2010}< \frac{2010}{2011}\)
A=\(\frac{2008.\left(2009+1\right)+447}{\left(2008+1\right).2009+476}\)=\(\frac{2008.2008+2008+447}{2008.2009+2009+446}\)=1
\(\frac{2008.2009+2000}{2009.2010-2018}\)
\(=\frac{2008.\left(2010-1\right)+2010}{\left(2008+1\right).2010-2018}\)
\(=\frac{2008.2010-2008+2010}{2008.2010+2010-2018}\)
\(=\frac{2008.2010+2}{2008.2010-18}\)
Mình nghĩ bài này sai đề, nếu đề là 2018 -> 2008 thì bảo mình, mình làm lại cho
17A = \(\frac{17^{2009}+17}{17^{2009}+1}=1+\frac{16}{17^{2009}+1}\)
17B = \(\frac{17^{2010}+17}{17^{2010}+1}=1+\frac{16}{17^{2010}+1}\)
mà \(\frac{16}{17^{2009}+1}>\frac{16}{17^{2010}+1}\)
=> A > B
B < 17 ^ 2009 + 1 + 16 / 17^2010 + 1+16 = 17^2009 + 17 / 17^2010 + 17 = 17(17^2008 + 1) / 17(17^2009+1) = 17^2008 + 1 / 17^2009 + 1 =A
=> B < A
****** k mk nha!
Ta có : \(A=\frac{2009.2009+2008}{2009.2009+2009}\)
\(=1-\frac{1}{2009.2009+2009}\)
\(B=\frac{2009.2009+2009}{2009.2009+2010}\)
\(=1-\frac{1}{2009.2009.2010}\)
Mà \(-\frac{1}{2009.2009+2009}< -\frac{1}{2009.2009.2010}\)
=> \(\frac{2009.2009+2008}{2009.2009+2009}< \frac{2009.2009+2009}{2009.2009.2010}\) => A < B