K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2018

a) Nhận thấy AB + BC = AC nên điểm B nằm giữa hai điểm A và C

b, c) HS tự làm.

d) Nhận thấy AB + AC = 1 2 BC +  1 2 BC = BC nên điểm A nằm giữa hai điểm B và C.

20 tháng 11 2018

Ta có: \(a^2+3=\left(a+b\right)\left(a+c\right)\)

Áp dụng BĐT AM-GM ta có:

\(VT=\dfrac{a}{a^2+7}+\dfrac{b}{b^2+7}+\dfrac{c}{c^2+7}\le\sum\dfrac{a}{4\sqrt{a^2+3}}=\sum\dfrac{a}{4\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(\le\sum\dfrac{a}{4}.\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)=\sum\dfrac{1}{8}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)=\dfrac{3}{8}\)

Dấu = xảy ra khi a=b=c=1

P/s:\(\sum\limits_{x,y,z}x=x+y+z\) :Tổng hoán vị

20 tháng 11 2018

Akai Haruma giúp em với !!!

10 tháng 4 2021

Một bài bất đẳng thức khá đặc trưng với phương pháp đổi biến p,q,r. Mình sẽ phiên từ lời giải đổi biến sang biến đổi tương đương nhé. 
\(ab+bc+ca\le\dfrac{2}{7}+\dfrac{9abc}{7}\\ \Leftrightarrow7\left(ab+bc+ca\right)\left(a+b+c\right)\le2\left(a+b+c\right)^3+9abc\\ \Leftrightarrow7\left(a^2b+a^2c+b^2c+b^2a+c^2a+c^2b+3abc\right)\le2\left(a^3+b^3+c^3+3a^2b+3a^2c+3b^2c+3b^2a+3c^2a+3c^2b+6abc\right)+9abc\\ \Leftrightarrow2a^3+2b^3+2c^3\ge a^2b+a^2c+b^2c+b^2a+c^2a+c^2b\left(1\right)\)Thật vậy, áp dụng bất đẳng thức Cosi cho cặp 3 số dương ta có:

\(a^3+a^3+b^3\ge3a^2b;b^3+b^3+c^3\ge3b^2c;c^3+c^3+a^3\ge3c^2a\\ \Rightarrow a^3+b^3+c^3\ge a^2b+b^2c+c^2a\)

Tương tự : \(a^3+b^3+c^3\ge a^2c+b^2a+c^2b\)

Suy ra (1) được chứng minh

Dấu bằng xảy ra khi và chỉ khi a=b=c=1/3 

---- Tick cho mình với ----- 

28 tháng 7 2019

\(\text{Ta có: }\hept{\begin{cases}a+b=5\\b+c=-7\end{cases}\Leftrightarrow a+b-b-c=12\Leftrightarrow a-c=12}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=5\\b+c=-7\\a-c=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2=25\\\left(b+c\right)^2=49\\\left(a-c\right)^2=144\end{cases}}\)

\(\Leftrightarrow2.\left(a^2+b^2+c^2+ab+bc-ac\right)=25+49+144=218\)

\(\Leftrightarrow D=a^2+b^2+c^2+ab+bc-ac=109\)

\(\text{Vậy }D=109\)