Cho số tự nhiên C = ax.by trong đó a, b là các số nguyên tố đôi một khác nhau; còn x, y là các số tự nhiên khác 0. Biết C3 có 40 ước. Hỏi C2 có bao nhiêu ước.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số ước của A chỉ chứa thừa số nguyên tố là x thừa số, chỉ chứa thừa số nguyên tố b là y thừa số, chỉ chứa thừa số nguyên tố c là z thừa số, chỉ chứa thừa số nguyên tố ab là xy thừa số, chỉ chứa thừa số nguyên tố ac là xz thừa số, chỉ chứa thừa số nguyên tố bc là yz thừa số, chỉ chứa thừa số nguyên tố abc là xyz thừa số. Vì A là ước của chính nó, do đó số ước của A bằng:
x+y+z+xy+yz+zx+xyz+1 = x(z+1)+y(z+1)+xy(z+1)+z+1 = (z+1)(x+y+xy+1)
= (z+1)[(x+1)+y(x+1)] = (z+1)(y+1)(x+1)
Số các ước của N là:
(1 + 1)(2 + 1)(3 + 1)(4 + 1) = 120 (ước)
Đ/S:...
Ta sẽ tính ước của từng thừa số
Ta có:
- Ư(ax) = {a1; a2; a3;...; ax}
Như thế sẽ có x + 1 ước
- Ư(by) = {b1; b2; b3;...; by}
Như thế sẽ có y + 1 ước
- Ư(cz) = {c1; c2; c3;...; cz}
Như thế sẽ có z + 1 ước
Vậy Ư(A) sẽ tính theo công thức (x + 1)(y + 1)(z + 1)
Ta có:
B = 2x . 3y
B2 = 22x . 32y
=> số ước của B2 là (2x + 1).(2y + 1) = 15
+ Nếu x > y thì 2x + 1 = 5; 2y + 1 = 3
=> x = 2; y = 1
=> số ước của B3 là (3.2 + 1).(3.1 + 1) = 40 (ước)
+ Nếu x < y thì 2x + 1 = 3; 2y + 1 = 5
=> x = 1; y = 2
=> số ước của B3 là (3.1 + 1).(3.2 + 1) = 40 (ước)
Vậy B3 có 40 ước
Chú ý: ta loại trường hợp: 2x + 1 = 15; 2y + 1 = 1 hoặc ngược lại vì khi đó 1 trong 2 số x hoặc y = 0, không đúng với đề bài là x; y là các số tự nhiên khác 0
Ta có:
B = 2x . 3y
B2 = 22x . 32y
=> số ước của B2 là (2x + 1).(2y + 1) = 15
+ Nếu x > y thì 2x + 1 = 5; 2y + 1 = 3
=> x = 2; y = 1
=> số ước của B3 là (3.2 + 1).(3.1 + 1) = 40 (ước)
+ Nếu x < y thì 2x + 1 = 3; 2y + 1 = 5
=> x = 1; y = 2
=> số ước của B3 là (3.1 + 1).(3.2 + 1) = 40 (ước)
Vậy B3 có 40 ước
Chú ý: ta loại trường hợp: 2x + 1 = 15; 2y + 1 = 1 hoặc ngược lại vì khi đó 1 trong 2 số x hoặc y = 0, không đúng với đề bài là x; y là các số tự nhiên khác 0
21 ước