so sánh 2^3^2 và 3^2^3 giúp mik với. Thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = 1 + 2 + 22 + 23 + ... + 2100
=> 2A = 2 + 22 + 23 + 24 + ... + 2101
Khi đó 2A - A = (2 + 22 + 23 + 24 + ... + 2101) - (1 + 2 + 22 + 23 + ... + 2100)
=> A = 2101 - 1
Vì 2101 - 1 < 2101
=> A < B
Vậy A < B
A = 1 + 2 + 22 + 23 + ... + 2100
=> 2A = 2( 1 + 2 + 22 + 23 + ... + 2100 )
= 2 + 22 + 23 + ... + 2101
=> A = 2A - A
= 2 + 22 + 23 + ... + 2101 - ( 1 + 2 + 22 + 23 + ... + 2100 )
= 2 + 22 + 23 + ... + 2101 - 1 - 2 - 22 - 23 - ... - 2100
= 2101 - 1 < 2101
=> A < B
Ta có :
\(B=4+2^2+2^3+2^4+...+2^{2016}\)
\(\Rightarrow\) \(B-4=2^2+2^3+2^4+...+2^{2016}\)
\(\Rightarrow\) \(2\left(B-4\right)=2^3+2^4+2^5+...+2^{2017}\)
\(\Rightarrow\) \(2\left(B-4\right)-\left(B-4\right)=B-4=2^{2017}-2^2\)
\(\Rightarrow\) \(B=2^{2017}-2^2+4=2^{2017}\)
\(\Rightarrow\) \(A=B=2^{2017}\)
Vậy \(A=B\)
\(A=\dfrac{2^{2008}-3}{2^{2007}-1};B=\dfrac{2^{2007}-3}{2^{2006}-1}\)
\(\dfrac{1}{2}A=\dfrac{2^{2008}-3}{2^{2008}-2}=1-\dfrac{1}{2^{2008}-2};\dfrac{1}{2}B=\dfrac{2^{2007}-3}{2^{2007}-2}=1-\dfrac{1}{2^{2007}-2}\)
2^2008-2>2^2007-2
=>1/2^2008-2<1/2^2007-2
=>A>B
a) Ta có: a = -1/8 = -9/72
b = 2/-9 = -2/9 = -16/72
Ta thấy: -9 > -16 => -9/72 > -16/72
hay a > b
Vậy a > b
b) Ta có: a = 12/15 = 4/5= 16/20
b = -( -3/4 ) = 3/4= 15/20
Ta thấy: 16 > 15 => 16/20 > 15/20
hay a > b
Vậy a > b
c) Ta có: a = -2/3 = -40/60
b = -0,65 = -13/20 = -39/60
Ta thấy: -40 < -39 => -40/60 < -39/60
hay a < b
Vậy a < b
d) Ta có: a = -21/3 = -7
b = -413% = -4,13
Ta thấy: -7 < -4,13
=> a < b
Vậy a < b
Chuk bn hok tốt!
2^3^2=512
3^2^3=6561
Vậy 2^3^2 bé hơn 3^2^3
(23)2 = 26
(32)3 = 36
Vì 26 < 36 nên (23)2 < (32)3