K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2-4x-21>0\)

\(\Leftrightarrow\)  \(x^2-4x+4>25\)

\(\Leftrightarrow\) \(\left(x-2\right)^2>25\)

\(\Leftrightarrow\) \(\left|x-2\right|>5\)

\(\Leftrightarrow\orbr{\begin{cases}x-2>5\\x-2>-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x>7\\x>-3\end{cases}}}\)

3 tháng 8 2018

\(x^2-4x-21>0\)

\(x^2-4x+4-25>0\)

\(\left(x-2\right)^2>25\)

Ta có: \(25=5^2=\left(-5\right)^2\)

TH1: \(\left(x-2\right)^2>5^2\)

\(x-2>5\)

\(x>7\)

TH2: \(\left(x-2\right)^2>\left(-5\right)^2\)

\(x-2>-5\)

\(x>-3\)

Kết hợp cả 2 TH ta đc x>-3

=.= hok tốt!!

22 tháng 4 2021

X2 -2x +8 < 0

X2 -2x +1 +7 < 0

(x-1)2 +7 <0

mà (x-1)2 > 0 với mọi x

=> (x-1)2 +7>0 với mọi x

nên bpt vô nghiệm  

a) Ta có: \(x^2-4x-21>0\)

\(\Leftrightarrow x^2-4x+4-25>0\)

\(\Leftrightarrow\left(x-2\right)^2>25\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2>5\\x-2< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>7\\x< -3\end{matrix}\right.\)

Vậy: x>7 hoặc x<-3

1 tháng 9 2023

1) \(\sqrt[]{9\left(x-1\right)}=21\)

\(\Leftrightarrow9\left(x-1\right)=21^2\)

\(\Leftrightarrow9\left(x-1\right)=441\)

\(\Leftrightarrow x-1=49\Leftrightarrow x=50\)

2) \(\sqrt[]{1-x}+\sqrt[]{4-4x}-\dfrac{1}{3}\sqrt[]{16-16x}+5=0\)

\(\Leftrightarrow\sqrt[]{1-x}+\sqrt[]{4\left(1-x\right)}-\dfrac{1}{3}\sqrt[]{16\left(1-x\right)}+5=0\)

\(\)\(\Leftrightarrow\sqrt[]{1-x}+2\sqrt[]{1-x}-\dfrac{4}{3}\sqrt[]{1-x}+5=0\)

\(\Leftrightarrow\sqrt[]{1-x}\left(1+3-\dfrac{4}{3}\right)+5=0\)

\(\Leftrightarrow\sqrt[]{1-x}.\dfrac{8}{3}=-5\)

\(\Leftrightarrow\sqrt[]{1-x}=-\dfrac{15}{8}\)

mà \(\sqrt[]{1-x}\ge0\)

\(\Leftrightarrow pt.vô.nghiệm\)

3) \(\sqrt[]{2x}-\sqrt[]{50}=0\)

\(\Leftrightarrow\sqrt[]{2x}=\sqrt[]{50}\)

\(\Leftrightarrow2x=50\Leftrightarrow x=25\)

1 tháng 9 2023

1) \(\sqrt{9\left(x-1\right)}=21\) (ĐK: \(x\ge1\))

\(\Leftrightarrow3\sqrt{x-1}=21\)

\(\Leftrightarrow\sqrt{x-1}=7\)

\(\Leftrightarrow x-1=49\)

\(\Leftrightarrow x=49+1\)

\(\Leftrightarrow x=50\left(tm\right)\)

2) \(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\) (ĐK: \(x\le1\))

\(\Leftrightarrow\sqrt{1-x}+2\sqrt{1-x}-\dfrac{4}{3}\sqrt{1-x}+5=0\)

\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}+5=0\)

\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}=-5\) (vô lý) 

Phương trình vô nghiệm

3) \(\sqrt{2x}-\sqrt{50}=0\) (ĐK: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x}=\sqrt{50}\)

\(\Leftrightarrow2x=50\)

\(\Leftrightarrow x=\dfrac{50}{2}\)

\(\Leftrightarrow x=25\left(tm\right)\)

4) \(\sqrt{4x^2+4x+1}=6\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\left(ĐK:x\ge-\dfrac{1}{2}\right)\\2x+1=-6\left(ĐK:x< -\dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(tm\right)\\x=-\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)

5) \(\sqrt{\left(x-3\right)^2}=3-x\)

\(\Leftrightarrow\left|x-3\right|=3-x\)

\(\Leftrightarrow x-3=3-x\)

\(\Leftrightarrow x+x=3+3\)

\(\Leftrightarrow x=\dfrac{6}{2}\)

\(\Leftrightarrow x=3\)

a: =>(x-7)(x+3)=0

hay \(x\in\left\{7;-3\right\}\)

b: =>2x+7=0

hay x=-7/2

c: \(\Delta=50-4\cdot6\cdot2=50-48=2\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{5\sqrt{2}-\sqrt{2}}{12}=\dfrac{\sqrt{2}}{3}\\x_2=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

9 tháng 4 2017

1/ y(y+4)=21 ->  y^2 +4y -21=0  -> (y-3)(y+7)=0

VẬY y=3, -7.

2/???

3/(y-4)(y-1)=0 -> y=4, 1

THOI, MAY CAI CO BAN SGK CUNG HOI.DẸP, TỰ LÀM NỐT ĐI, DỄ MÀ.

XONG BẤM ĐÚNG CHO MÌNH