K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

\(\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+...+\frac{73}{72}\)

\(=1+\frac{1}{2}+1+\frac{1}{6}+1+\frac{1}{13}+...+1+\frac{1}{72}\)

\(=8+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{72}\right)\)

\(=8+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\right)\)

\(=8+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\right)\)

\(=8+1-\frac{1}{9}=8\frac{8}{9}\)

2 tháng 8 2018

\(\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+...+\frac{73}{72}\)

\(=1+\frac{1}{2}+1+\frac{1}{6}+...+1+\frac{1}{72}\)

\(=\left(1+1+...+1\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}\right)\)

\(=8+1-\frac{1}{9}\)

\(=9-\frac{1}{9}=\frac{80}{9}\)

3 tháng 7 2023

A=1+1/2+1+1/6+1+1/12+...+1+1/90=

=9+1/2+1/6+1/12+...+1/90

1/2+1/6+1/12+...+1/90=

1/1x2+1/2x3+2/3x4+...+1/9x10=

\(=\dfrac{2-1}{1x2}+\dfrac{3-2}{2x3}+\dfrac{4-3}{3x4}+...+\dfrac{10-9}{9x10}=\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}=\)

\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

\(\Rightarrow A=9+\dfrac{9}{10}=9\dfrac{9}{10}\)

10 tháng 10 2021

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17+18 = 171 nhé

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17+18.  = 171

12 tháng 7 2021

\(\sqrt{13+\sqrt{48}}=\sqrt{13+\sqrt{4.12}}=\sqrt{13+2\sqrt{12}}=\sqrt{\left(\sqrt{12}+1\right)^2}\)

\(=\sqrt{12}+1=2\sqrt{3}+1\)

\(\Rightarrow\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}-1\)

\(\Rightarrow\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{3+\sqrt{3}-1}=\sqrt{2+\sqrt{3}}\)

\(\Rightarrow\sqrt{\dfrac{4+2\sqrt{3}}{2}}=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)

\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}==2.\dfrac{\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}+\sqrt{2}\)

2) biến đổi khúc sau như câu 1:

\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

 

12 tháng 7 2021

1) Ta có: \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-\sqrt{13+\sqrt{4.12}}}=\sqrt{5-\sqrt{13+2\sqrt{12}}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{12}\right)^2+2.\sqrt{12}+1^2}}=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}=\sqrt{5-\left|\sqrt{4.3}+1\right|}\)

\(=\sqrt{5-\left(2\sqrt{3}+1\right)}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)

\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=2\sqrt{3+\sqrt{3}-1}=2\sqrt{2+\sqrt{3}}\)

\(=2\sqrt{\dfrac{4+2\sqrt{3}}{2}}=2\sqrt{\dfrac{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}{2}}=2\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}\)

\(=2.\dfrac{\left|\sqrt{3}+1\right|}{\sqrt{2}}=\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{6}+\sqrt{2}\)

2) Ta có: \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{3}-1\) (như trên)

\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\) 

\(=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}=\sqrt{\left(\sqrt{3}+1\right)^2}=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)

 

 

21/15=21:3/15:3=7/5

11/121=11:11/121:11=1/11

27/72=27:9/72:9=3/8

26 tháng 1 2022

\(\dfrac{21}{15}=\dfrac{7}{5};\dfrac{11}{121}=\dfrac{1}{11};\dfrac{27}{72}=\dfrac{3}{8}\)

8 tháng 3 2022

\(\dfrac{-1}{12},\dfrac{-3}{4},\dfrac{2}{9},\dfrac{7}{6}\)

8 tháng 3 2022

\(-\dfrac{1}{12},-\dfrac{3}{4},\dfrac{2}{9},\dfrac{7}{6}\)

25 tháng 5 2020

A= - 2014 +2014 +1 . (-1) +(- 8) - 12/25 - 17/37 +13/25 - 20/37

A = ( -2014+2014) + ( - 1) +(-8) - (12/25 - 13/25 ) - (17/37 +20/37)

A = 0  +(-1) + (-8) +1/25 -1

A =(-9) +0,04   - 1

A = - 9,96

25 tháng 5 2020

thank you

24 tháng 10 2021

\(3^{15}-9^6=3^{15}-\left(3^2\right)^6=3^{15}-3^{12}=3^{12}\left(3^3-1\right)=3^{12}\cdot26=3^{12}\cdot13\cdot2⋮13\)

9 tháng 2 2022

a <

b <

c <

9 tháng 2 2022

a)

−2/3>5/−8

b)

398/−412<−25/−137

c)

−14/21<60/72