Nhờ các bn giúp mìh cái nha!
Cho tam giác ABC cân tại A. Vẽ 2 đường trung tuyến AM và BN. Cho biết AM=9, BC =8. Tính đoạn thẳng BN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi G là giao của 2 đường trung tuyến AM và BN.Vì ABC là tam giác cân nên
\(AM\perp BC\)
Theo định lý Pytago,xét tam giác vuông tại M :GMB
\(BG^2=GM^2+BM^2=3^2+4^2\)
\(\Rightarrow BG=5\)
Vì G là trọng tâm nên
\(BG=\frac{2}{3}BN\Rightarrow\frac{5}{\left(\frac{2}{3}\right)}=BN\Leftrightarrow BN=\frac{15}{2}\)
Cách khác:
Vì AM vuông góc BC nên
Xét tam giác ABM
\(ÂB^2=BM^2+AM^2\)
\(AB^2=4^2+9^2=97\)
Vậy \(AB=AC=\sqrt{97}\)
Ta có công thức tính độ dài đường trung tuyến
\(m_b=\sqrt{\frac{AB^2+BC^2}{2}-\frac{AC^2}{4}}=\sqrt{\frac{97+64}{2}-\frac{97}{4}}=\frac{15}{2}\)
mk pit làm phần a thui
vì AG=2GM
+) AG=4 cm
=>4=2GM
=> MG=4:2=2 (cm)
+)gm+ag=am
+)mg=2 cm
+) ag=9cm
=>2+9=am
=> am=11 cm
tính độ dài đoạn cp và bn tương tự như trên
Cho tam giác HPG có 3 trung tuyến HM,PA,GB cắt nhau tại T . Biết TH = 3 cm,TP=TG=4 cm a, Tính HM,PA,GB. b, Chứng minh tam giác HPG cân
bn làm xong hết chưa