Cho tam giác vuông ABC biết tỉ số 2 cạnh góc vuông là 5/12,cạnh huyền là 26 cm.Tính độ dài các cạnh góc vuông và hình chiếu của cạnh góc vuông trên cạnh huyền.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{12}\)
nên \(AB=\dfrac{5}{12}AC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\dfrac{25}{144}AC^2+AC^2=26^2\)
\(\Leftrightarrow\dfrac{169}{144}AC^2=676\)
\(\Leftrightarrow AC^2=576\)
hay AC=24(cm)
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{12}\)(gt)
nên \(AB=\dfrac{5}{12}\cdot AC=\dfrac{5}{12}\cdot24=10\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot26=240\)
hay \(AH=\dfrac{120}{13}\left(cm\right)\)
(P/s:Hình ảnh mang tính chất minh họa)
Giả sử \(\Delta ABC\)có: \(\widehat{CAB}=90^o;AH\perp BC;BC=26;\frac{AB}{AC}=\frac{5}{12}\)
\(\frac{AB}{AC}=\frac{5}{12}\Rightarrow\frac{AB}{5}=\frac{AC}{12}\Rightarrow\frac{AB^2}{25}=\frac{AC^2}{144}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{AB^2}{25}=\frac{AC^2}{144}=\frac{AB^2+AC^2}{25+144}=\frac{AB^2+AC^2}{169}\)
Áp dụng định lí Py-ta-go vào tam giác vuông ABC có:
\(AB^2+AC^2=BC^2\Rightarrow AB^2+AC^2=26^2=676\)
\(\Rightarrow\frac{AB^2}{25}=\frac{AC^2}{144}=\frac{676}{169}=4\)
\(\Rightarrow\frac{AB^2}{25}=4\Rightarrow AB^2=4\cdot25=100\Rightarrow AB=\sqrt{100}=10\)
\(\frac{AC^2}{144}=4\Rightarrow AC^2=144.4=576\Rightarrow AC=\sqrt{576}=24\)
Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu ta được:
\(AB^2=BH.BC\Rightarrow BH=\frac{10^2}{26}=\frac{50}{13}\)
\(CH=BC-BH=26-\frac{50}{13}=\frac{288}{13}\)
cạnh góc vuông lớn 7.5
cạnh huyền \(\frac{3}{2}\sqrt{41}\)
hình chiếu có 1 thôi vì chung đỉnh 900/41 :) số hơi lẻ
Ta có: \(\dfrac{AB}{AC}=\dfrac{4}{5}\)
\(\Leftrightarrow AC=\dfrac{5\cdot AB}{4}=\dfrac{5\cdot6}{4}=7.5\left(cm\right)\)
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay \(BC=\dfrac{3\sqrt{41}}{2}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{24\sqrt{41}}{41}\left(cm\right)\\CH=\dfrac{75\sqrt{41}}{82}\left(cm\right)\end{matrix}\right.\)
a/ Kẻ đường cao AH => BH là hình chiếu của AB trên BC và CH là hình chiếu của AC trên BC
Giả sử \(\frac{AB}{AC}=k\Rightarrow\frac{AB^2}{AC^2}=k^2\)
Ta có \(AB^2=BH.BC;AC^2=CH.BC\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}=k^2\)
b/ Áp dụng câu A sẽ tính được tỷ số hình chiếu 2 cạnh góc vuông trên BC là mà biết chiều dài BC=82 bài toán là dạng tìm 2 số khi biết tổng và tỷ ở lớp 5 rồi bạn tự giải nốt nhé
Tam giác ABC vuông tại A; BC = 26; AB/AC = 5/12; đường cao AH
\(\frac{AB}{AC}=\frac{5}{12}\) \(\Rightarrow\)\(\frac{AB}{5}=\frac{AC}{12}=k\)=> \(AB=5k;\)\(AC=12k\) (K > 0)
Áp dụng Pytago ta có:
AB2 + AC2 = BC2
<=> 25K2 + 144K2 = 676
<=> 169K2 = 676
<=> K2 = 4
<=> K =2
=> AB = 5.2 = 10
AC = 12.2 = 24
Áp dụng hệ thức lượng ta có:
AB2 = BH.BC
=> BH = AB2/BC = 50/13
=> CH = BC - BH = 288/13