Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B H C (P/s:Hình ảnh mang tính chất minh họa)
Giả sử \(\Delta ABC\)có: \(\widehat{CAB}=90^o;AH\perp BC;BC=26;\frac{AB}{AC}=\frac{5}{12}\)
\(\frac{AB}{AC}=\frac{5}{12}\Rightarrow\frac{AB}{5}=\frac{AC}{12}\Rightarrow\frac{AB^2}{25}=\frac{AC^2}{144}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{AB^2}{25}=\frac{AC^2}{144}=\frac{AB^2+AC^2}{25+144}=\frac{AB^2+AC^2}{169}\)
Áp dụng định lí Py-ta-go vào tam giác vuông ABC có:
\(AB^2+AC^2=BC^2\Rightarrow AB^2+AC^2=26^2=676\)
\(\Rightarrow\frac{AB^2}{25}=\frac{AC^2}{144}=\frac{676}{169}=4\)
\(\Rightarrow\frac{AB^2}{25}=4\Rightarrow AB^2=4\cdot25=100\Rightarrow AB=\sqrt{100}=10\)
\(\frac{AC^2}{144}=4\Rightarrow AC^2=144.4=576\Rightarrow AC=\sqrt{576}=24\)
Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu ta được:
\(AB^2=BH.BC\Rightarrow BH=\frac{10^2}{26}=\frac{50}{13}\)
\(CH=BC-BH=26-\frac{50}{13}=\frac{288}{13}\)
Tam giác ABC vuông tại A; BC = 26; AB/AC = 5/12; đường cao AH
B A C H
\(\frac{AB}{AC}=\frac{5}{12}\) \(\Rightarrow\)\(\frac{AB}{5}=\frac{AC}{12}=k\)=> \(AB=5k;\)\(AC=12k\) (K > 0)
Áp dụng Pytago ta có:
AB2 + AC2 = BC2
<=> 25K2 + 144K2 = 676
<=> 169K2 = 676
<=> K2 = 4
<=> K =2
=> AB = 5.2 = 10
AC = 12.2 = 24
Áp dụng hệ thức lượng ta có:
AB2 = BH.BC
=> BH = AB2/BC = 50/13
=> CH = BC - BH = 288/13
a/ Kẻ đường cao AH => BH là hình chiếu của AB trên BC và CH là hình chiếu của AC trên BC
Giả sử \(\frac{AB}{AC}=k\Rightarrow\frac{AB^2}{AC^2}=k^2\)
Ta có \(AB^2=BH.BC;AC^2=CH.BC\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}=k^2\)
b/ Áp dụng câu A sẽ tính được tỷ số hình chiếu 2 cạnh góc vuông trên BC là mà biết chiều dài BC=82 bài toán là dạng tìm 2 số khi biết tổng và tỷ ở lớp 5 rồi bạn tự giải nốt nhé
Đặt tên cho tam giác vuông là ABC , góc A vuông, đường cao AH
Giải :
Ta có :\(\Delta ABC,\widehat{A}=90^o,AH\perp BC\)
Với \(\frac{AB}{AC}=\frac{3}{4}\)
\(\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)
\(\Rightarrow\)\(\frac{AB^2}{9}=\frac{AC^2}{16}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{15625}{25}\)\(=625\)
\(AB^2=9.625=5625\)
\(\Rightarrow AB=75\left(cm\right)\)
\(AC^2=16.625=10000\)
\(\Rightarrow AC=100\left(cm\right)\)
Xét \(\Delta ABC\)vuông tại A, \(AH\perp BC\)
Ta có : \(AB^2=BH.BC\)(hệ thức...)
\(\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\left(cm\right)\)
Ta có : \(H\in BC\Rightarrow BH+HC=BC\)
\(\Rightarrow CH=BC-BH\)
\(\Rightarrow CH=125-45=80\left(cm\right)\)
Gọi tam giác vuông trên là ABC, ta có:
AB/AC=3/4
=> AB^2/AC^2 = 9/16
=> 16AB^2 - 9AC^2 = 0 (*)
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**)
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0
=> AB^2 = 5605. Vì AB > 0 => AB = 75
AC = 4/3 x AC => AC = 100
Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC.
Ta dễ dàng thấy tam giác vuông ABC,tam giác vuông BHA và tam giác vuông AHC là 3 tam giác đồng dạng.
Ta có:
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{12}\)
nên \(AB=\dfrac{5}{12}AC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\dfrac{25}{144}AC^2+AC^2=26^2\)
\(\Leftrightarrow\dfrac{169}{144}AC^2=676\)
\(\Leftrightarrow AC^2=576\)
hay AC=24(cm)
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{12}\)(gt)
nên \(AB=\dfrac{5}{12}\cdot AC=\dfrac{5}{12}\cdot24=10\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot26=240\)
hay \(AH=\dfrac{120}{13}\left(cm\right)\)