Cho a,b ≥ 0 thỏa mãn a2+b2 ≤ 2
Chứng minh rằng
\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cô-si :
\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le a\cdot\frac{3a+a+2b}{2}+b\cdot\frac{3b+b+2a}{2}\)
\(=a\cdot\frac{4a+2b}{2}+b\cdot\frac{4b+2a}{2}\)
\(=a\left(2a+b\right)+b\left(2b+a\right)\)
\(=2a^2+2b^2+2ab\)
\(=2\left(a^2+b^2+ab\right)\le2\left(2+\frac{a^2+b^2}{2}\right)=2\left(2+\frac{2}{2}\right)=6\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)
p/s: có gì chiều giải nốt, giờ đi ăn cơm @@
Áp dụng BĐT Cauchy ta có : \(2\ge a^2+b^2\ge2\sqrt{a^2b^2}=2ab\Rightarrow ab\le1\)
Áp dụng BĐT Bunhiacopxki :
\(\left(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\right)^2\le\left(a^2+b^2\right)\left[3\left(a^2+b^2\right)+12ab\right]\)
\(\le2\left(3.2+12.1\right)=36\)
\(\Rightarrow a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le6\)
Dấu "=" xảy ra khi a = b = 1
ÁP DỤNG BĐT CÔ SI ,TA CÓ:
\(\sqrt{3a\left(a+2b\right)}\le\frac{3a+\left(a+2b\right)}{2}=2a+b\)\(\Leftrightarrow a\sqrt{3a\left(a+2b\right)}\le a\left(2a+b\right)=2a^2+ab\left(1\right)\)
(VÌ a,b khong âm). C/M TƯƠNG TỰ TA CÓ \(b\sqrt{3b\left(b+2a\right)}\le2b^2+ab\left(2\right)\)
TA CÓ :\(2ab\le a^2+b^2\le2\left(3\right)\).TỪ (1),(2),(3) TA CÓ;
\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le2a^2+2b^2+ab+ab\le\)\(2\left(a^2+b^2\right)+2ab\le4+2=6\)
DẤU ĐẲNG THỨC XẢY RA KHI a=b=1
Đặt vế trái của BĐT là P:
\(P=\sqrt{\left(a+2\right)\left(b+2\right)}+\sqrt{2b.\left(a+1\right)}\)
\(P\le\dfrac{1}{2}\left(a+2+b+2\right)+\dfrac{1}{2}\left(2b+a+1\right)\)
\(P\le\dfrac{1}{2}\left(2a+3b+5\right)=\dfrac{1}{2}.2024=1012\)
Dấu "=" không xảy ra
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$C^2\leq (a+b)[(29a+3b)+(29b+3a)]=32(a+b)^2$
$(a+b)^2\leq (a^2+b^2)(1+1)\leq 4$
$\Rightarrow C^2\leq 32.4$
$\Rightarrow C\leq 8\sqrt{2}$
Vậy $C_{\max}=8\sqrt{2}$. Dấu "=" xảy ra khi $a=b=1$
\(\sqrt{3b\left(a+2b\right)}\le\frac{3b+\left(a+2b\right)}{2}\); \(\sqrt{3a\left(b+2a\right)}\le\frac{3a+\left(b+2a\right)}{2}\)
=> M\(\le a\frac{a+5b}{2}+b\frac{5a+b}{2}\)=\(\frac{a^2+b^2+10ab}{2}\)\(\le\frac{6\left(a^2+b^2\right)}{2}\)( áp dụng 2ab\(\le a^2+b^2\))=3(a2+b2)\(\le\)6
dấu = khi a =b =1
Bài 1, t nghĩ VP căn phải kéo dài hết
Áp dụng bđt bu nhi a, ta có
\(\left(\sqrt{ab}+\sqrt{cd}\right)^2\le\left(a+d\right)\left(b+c\right)\Rightarrow\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+d\right)\left(b+c\right)}\left(ĐPCM\right)\)
Bài 2, Áp dụng bài 1, ta có
\(\left(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\right)\le\left(a^2+b^2\right)\left[3a\left(a+2b\right)+3b\left(b+2a\right)\right]\)
\(\le2\left(3a^2+6ab+3b^2+6ab\right)=2\left[3\left(a^2+b^2\right)+12ab\right]\le2\left(6+12ab\right)\)
Áp dụng bđt cô si, ta có
\(a^2+b^2\ge2ab\Rightarrow2\ge2ab\Rightarrow12\ge12ab\)
=>(...)^2<=36 => ...<=6 (ĐPcM)
dấu = xảy ra <=> a=b=1
^_^
Áp dụng BĐT Cô-si,ta có :
\(a\sqrt{3a\left(a+2b\right)}\le a.\frac{3a+a+2b}{2}=2a^2+ab\)
Tương tự : \(b\sqrt{3b\left(b+2a\right)}\le2b^2+ab\)
Cộng vế theo vế, ta được :
\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le2\left(a^2+b^2\right)+2ab=4+2ab\le4+a^2+b^2\le6\)
Dấu "=" xảy ra khi a = b = 1
\(\left(a+3b\right)\left(b+3a\right)\le\left(\frac{4a+4b}{2}\right)^2=\left(2a+2b\right)^2\)
=>\(\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\frac{1}{2}\left(2a+2b\right)=a+b\)
Mình làm phần dễ nhất rồi, còn lại của bạn đó ^^
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)})^2\leq (a^2+b^2)[3a(a+2b)+3b(b+2a)]\)
\((a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)})^2\leq (a^2+b^2)(3a^2+3b^2+12ab)\)
Theo BĐT Cô-si: \(a^2+b^2\geq 2ab\Rightarrow 12ab\leq 6(a^2+b^2)\)
Do đó:
\((a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)})^2\leq (a^2+b^2)(3a^2+3b^2+6a^2+6b^2)=9(a^2+b^2)^2\)
Mà \(a^2+b^2\leq 2\)
\(\Rightarrow (a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)})^2\leq 9.2^2=36\)
\(\Rightarrow a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)}\leq \sqrt{36}=6\)
(đpcm)
Dấu bằng xảy ra khi $a=b=1$