K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)})^2\leq (a^2+b^2)[3a(a+2b)+3b(b+2a)]\)

\((a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)})^2\leq (a^2+b^2)(3a^2+3b^2+12ab)\)

Theo BĐT Cô-si: \(a^2+b^2\geq 2ab\Rightarrow 12ab\leq 6(a^2+b^2)\)

Do đó:

\((a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)})^2\leq (a^2+b^2)(3a^2+3b^2+6a^2+6b^2)=9(a^2+b^2)^2\)

\(a^2+b^2\leq 2\)

\(\Rightarrow (a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)})^2\leq 9.2^2=36\)

\(\Rightarrow a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)}\leq \sqrt{36}=6\)

(đpcm)

Dấu bằng xảy ra khi $a=b=1$

6 tháng 8 2019

Áp dụng bất đẳng thức Cô-si :

\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le a\cdot\frac{3a+a+2b}{2}+b\cdot\frac{3b+b+2a}{2}\)

\(=a\cdot\frac{4a+2b}{2}+b\cdot\frac{4b+2a}{2}\)

\(=a\left(2a+b\right)+b\left(2b+a\right)\)

\(=2a^2+2b^2+2ab\)

\(=2\left(a^2+b^2+ab\right)\le2\left(2+\frac{a^2+b^2}{2}\right)=2\left(2+\frac{2}{2}\right)=6\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

p/s: có gì chiều giải nốt, giờ đi ăn cơm @@

26 tháng 10 2016

Áp dụng BĐT Cauchy ta có : \(2\ge a^2+b^2\ge2\sqrt{a^2b^2}=2ab\Rightarrow ab\le1\)

Áp dụng BĐT Bunhiacopxki : 

\(\left(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\right)^2\le\left(a^2+b^2\right)\left[3\left(a^2+b^2\right)+12ab\right]\)

\(\le2\left(3.2+12.1\right)=36\)

\(\Rightarrow a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le6\)

Dấu "=" xảy ra khi a = b = 1

12 tháng 2 2019

ÁP DỤNG BĐT CÔ SI ,TA CÓ:

\(\sqrt{3a\left(a+2b\right)}\le\frac{3a+\left(a+2b\right)}{2}=2a+b\)\(\Leftrightarrow a\sqrt{3a\left(a+2b\right)}\le a\left(2a+b\right)=2a^2+ab\left(1\right)\) 

(VÌ a,b khong âm). C/M TƯƠNG TỰ TA CÓ \(b\sqrt{3b\left(b+2a\right)}\le2b^2+ab\left(2\right)\) 

TA CÓ  :\(2ab\le a^2+b^2\le2\left(3\right)\).TỪ (1),(2),(3)  TA CÓ;

\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le2a^2+2b^2+ab+ab\le\)\(2\left(a^2+b^2\right)+2ab\le4+2=6\) 

DẤU ĐẲNG THỨC XẢY RA KHI a=b=1

NV
21 tháng 1 2021

Đặt vế trái của BĐT là P:

\(P=\sqrt{\left(a+2\right)\left(b+2\right)}+\sqrt{2b.\left(a+1\right)}\)

\(P\le\dfrac{1}{2}\left(a+2+b+2\right)+\dfrac{1}{2}\left(2b+a+1\right)\)

\(P\le\dfrac{1}{2}\left(2a+3b+5\right)=\dfrac{1}{2}.2024=1012\)

Dấu "=" không xảy ra

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$C^2\leq (a+b)[(29a+3b)+(29b+3a)]=32(a+b)^2$

$(a+b)^2\leq (a^2+b^2)(1+1)\leq 4$

$\Rightarrow C^2\leq 32.4$

$\Rightarrow C\leq 8\sqrt{2}$
Vậy $C_{\max}=8\sqrt{2}$. Dấu "=" xảy ra khi $a=b=1$

2 tháng 10 2019

\(\sqrt{3b\left(a+2b\right)}\le\frac{3b+\left(a+2b\right)}{2}\)\(\sqrt{3a\left(b+2a\right)}\le\frac{3a+\left(b+2a\right)}{2}\)

=> M\(\le a\frac{a+5b}{2}+b\frac{5a+b}{2}\)=\(\frac{a^2+b^2+10ab}{2}\)\(\le\frac{6\left(a^2+b^2\right)}{2}\)( áp dụng 2ab\(\le a^2+b^2\))=3(a2+b2)\(\le\)6

dấu = khi a =b =1

30 tháng 12 2017

Bài 1, t nghĩ VP căn phải kéo dài hết

Áp dụng bđt bu nhi a, ta có 

\(\left(\sqrt{ab}+\sqrt{cd}\right)^2\le\left(a+d\right)\left(b+c\right)\Rightarrow\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+d\right)\left(b+c\right)}\left(ĐPCM\right)\)

Bài 2, Áp dụng bài 1, ta có 

\(\left(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\right)\le\left(a^2+b^2\right)\left[3a\left(a+2b\right)+3b\left(b+2a\right)\right]\)

\(\le2\left(3a^2+6ab+3b^2+6ab\right)=2\left[3\left(a^2+b^2\right)+12ab\right]\le2\left(6+12ab\right)\)

Áp dụng bđt cô si, ta có 

\(a^2+b^2\ge2ab\Rightarrow2\ge2ab\Rightarrow12\ge12ab\)

=>(...)^2<=36 => ...<=6 (ĐPcM)

dấu = xảy ra <=> a=b=1

^_^

1 tháng 5 2020

Áp dụng BĐT Cô-si,ta có :

\(a\sqrt{3a\left(a+2b\right)}\le a.\frac{3a+a+2b}{2}=2a^2+ab\)

Tương tự : \(b\sqrt{3b\left(b+2a\right)}\le2b^2+ab\)

Cộng vế theo vế, ta được :

\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\le2\left(a^2+b^2\right)+2ab=4+2ab\le4+a^2+b^2\le6\)

Dấu "=" xảy ra khi a = b = 1

1 tháng 5 2020

=3a+2b bằng số thỏa mãn

4 tháng 3 2020

\(\left(a+3b\right)\left(b+3a\right)\le\left(\frac{4a+4b}{2}\right)^2=\left(2a+2b\right)^2\)

=>\(\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\frac{1}{2}\left(2a+2b\right)=a+b\)

Mình làm phần dễ nhất rồi, còn lại của bạn đó ^^


 

6 tháng 4 2020

Đặt . Do đó . Cần chứng minh:

Or $3(x^2+y^2)^2 -(x^2+y^2)+4x^2 y^2 \geqq \frac{1}{2} \sqrt{3(x^4+y^4)+10x^2 y^2} $

Bình phương 2 vế và xét hiệu, ta cần chứng minh:

$ \left( 1/4-xy \right) \left( 256\, \left( 1/4-xy \right) ^{3}+64\,
 \left( 1/4-xy \right) ^{2}+5-16\,xy \right)\geqq 0$

Đó là điều hiển nhiên vì: $xy \leqq 1/4 (x+y)^2 =1/4$

Done.