K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

ta có: \(\frac{x^2-3}{x^2-11}=\frac{x^2-11+8}{x^2-11}=1+\frac{8}{x^2-11}\)

Để \(\frac{x^2-3}{x^2-11}\inℤ\)

=> 8/x2 -11 thuộc Z

=> 8 chia hết cho x^2 -11

=> x^2 - 11 thuộc Ư(8)={1;-1;2;-2;4;-4;8;-8}

...

rùi bn lập bảng xét giá trị hộ mk nha!

29 tháng 7 2018

\(\frac{x^2-3}{x^2-11}\inℤ\Leftrightarrow x^2-3⋮x^2-11\)

\(\Rightarrow x^2-11+8⋮x^2-11\)

     \(x^2-11⋮x^2-11\)

\(\Rightarrow8⋮x^2-11\)

\(\Rightarrow x^2-11\inƯ\left(8\right)\)

\(\Rightarrow x^2-11\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\)

\(\Rightarrow x^2\in\left\{10;12;9;13;7;15;3;19\right\}\) x là số nguyên

\(\Rightarrow x=3\)

\(\frac{x^2-3}{x^2-1}\in Z\)=>x2-3 chia hết cho x2-1

=>(x2-1)-2 chia hết cho x2-1

=>2 chia hết cho x2-1

=>x2-1\(\in\){-2;-1;1;2}

=>x2\(\in\){-1;0;2;3}

=>x\(\in\){0}

vậy x=0

4 tháng 11 2015

\(\frac{x^3-3}{x^3-1}=\frac{x^3-1-2}{x^3-1}=1-\frac{2}{x^3-1}\) là số nguyên

<=> x3 - 1 \(\in\) Ư(2) = {-2; -1; 1; 2}

<=> x3 \(\in\) {-1; 0; 2; 3}

Vì x là số nguyên nên x \(\in\) {-1; 0}

12 tháng 6 2019

b) \(M=\frac{2}{\sqrt{x}-3}\in Z\Leftrightarrow\sqrt{x}-3\) là ước của 2.

\(\Leftrightarrow\sqrt{x}-3\in\left\{\pm1,\pm2\right\}\Leftrightarrow\sqrt{x}\in\left\{1,2,3,4,5\right\}\)

\(\Leftrightarrow x\in\left\{1,4,16,25\right\}\)

Đối chiếu điều kiện ta có:

\(x\in\left\{1,16,25\right\}\)

12 tháng 6 2019

Để M là số nguyên thì \(\frac{2}{\sqrt{x}-3}\in Z\)    Suy ra \(\frac{2}{\sqrt{x}-3}=k\left(k\in N\right)\)

\(\Rightarrow\sqrt{x}-3=\frac{2}{k}\Leftrightarrow\sqrt{x}=\frac{2}{k}+3.\)\(\Rightarrow x=\left(\frac{2}{k}+3\right)^2\left(k\ne0\right).\)

Mà \(\sqrt{x}\ge0\Rightarrow\frac{2}{k}+3\ge0\Leftrightarrow\frac{2+3k}{k}\ge0\Leftrightarrow\hept{\begin{cases}k>0\\k\le-\frac{2}{3}\end{cases}\Leftrightarrow k\ne0\left(do-k\in Z\right).}\)

Lại theo ĐKXĐ ta có \(\hept{\begin{cases}\sqrt{x}\ne2\\\sqrt{x}\ne3\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{\sqrt{x}-3}\ne-2\\\frac{2}{\sqrt{x}-3}\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}k\ne-2\\k\ne0\end{cases}.}}\)

Kết hợp lại ta có \(k\in Z,k\ne-2,k\ne0\)

Vậy để M là số nguyên thì \(x=\left(\frac{2}{k}+3\right)^2\)với \(k\in Z,k\ne-2,k\ne0.\)

Có sai chỗ nào mong mọi người chỉ cho .Cảm ơn nhiều 

P/S: Hầu hết các câu trả lời đều là tìm x nguyên , nhưng đề bài là tìm x thôi ạ! 

4 tháng 8 2023

Để x là số nguyên thì 3a - 2 ϵ Ư(2) = {1; -1; 2; -2}.

Lập bảng

3a - 2 1 -1 2 -2
a 1 \(\dfrac{1}{3}\) (loại) \(\dfrac{4}{3}\) (loại) 0

a) Để x là số nguyên dương thì 3a - 2 phải là số nguyên dương. Vậy để x là số nguyên dương thì a = 1.

b) Để x là số nguyên âm thì 3a - 2 phải là số nguyên âm. Vậy để x là số nguyên âm thì a = 0.

20 tháng 6 2016

Ta có : \(\frac{x^2-3}{x^2-1}=\frac{x^2-1-2}{x^2-1}=\frac{x^2-1}{x^2-1}-\frac{2}{x^2-1}=1-\frac{2}{x^2-1}\)

Để Biểu thức trên nguyên thì \(1-\frac{2}{x^2-1}\in Z\Leftrightarrow\frac{2}{x^2-1}\in Z\Leftrightarrow x^2-1\in\text{Ư}\left(2\right)=\left\{-2;-1;1;2\right\}\)

\(\left(+\right)x^2-1=-2\Leftrightarrow x^2=-1\left(lo\text{ại}\right)\)

\(\left(+\right)x^2-1=-1\Leftrightarrow x^2=0\Leftrightarrow x=0\left(tm\right)\)

\(\left(+\right)x^2-1=1\Leftrightarrow x^2=2\Rightarrow x\approx1,4\left(lo\text{ại}\right)\)

\(\left(+\right)x^2-1=2\Leftrightarrow x^2=3\Leftrightarrow x\approx1,7\left(lo\text{ại}\right)\)

Vậy \(x=0\) thì biểu thức trên nguyên 

20 tháng 6 2016

\(\frac{x^2-3}{x^2-1}=\frac{x^2-1-2}{x^2-1}=\frac{x^2-1}{x^2-1}-\frac{2}{x^2-1}=1-\frac{2}{x^2-1}\)

Để \(\frac{x^2-3}{x^2-1}\)là số nguyên thì \(\frac{2}{x^2-1}\)là số nguyên

=>2 chia hết cho x2-1

=>x2-1\(\in\)Ư(2)

=>x2-1\(\in\){-2;-1;1;2}

=>x2\(\in\){-1;0;2;3}

+)Nếu x2=-1 => ko có x thỏa mãn vì x2\(\ge\)0

+)Nếu x2=0=>x=0

+)Nếu x2=2=>ko có x thỏa mãn

+)Nếu x2=3=>ko có x thỏa mãn

Vậy x=0

17 tháng 6 2016

\(\frac{x^2-3}{x^2-1}=\frac{x^2-1-2}{x^2-1}=1-\frac{2}{x^2-1}\)

Để \(\frac{x^2-3}{x^2-1}\in Z\) thì \(\frac{2}{x^2-1}\in Z\)

=> 2 chia hết cho x2-1

=>x2-1 \(\in\) Ư(2)

=>x2-1 \(\in\) (-2;-1;1;2}

=>x2 \(\in\) {-1;0;2;3}

Mà x\(\in Z\) => x2 \(\in\){0}

=>x=0