Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để phân số A tồn tại \(\Leftrightarrow n-3\ne0\)
\(\Leftrightarrow n\ne3\)
Vậy \(\Leftrightarrow n\ne3\)thì phân số A tồn tại
b) Để A có giá trị nguyên
\(\Leftrightarrow n+2⋮n-3\)
\(\Leftrightarrow n-3+5⋮n-3\)
mà \(n-3⋮n-3\)
\(\Rightarrow5⋮n-3\)
\(\Rightarrow n-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Tự tìm nốt n
ta có \(\frac{n-2}{n+3}=\frac{n+3-5}{n+3}\)
vì n+3 chia hết cho n+3
=> 5 chia hết cho n+3
=> n+3 thuộc Ư(5)={ 5:1:-5;-1}
ta có bảng giá trị
n+3 | 5 | 1 | -5 | -1 |
n | 2 | -2 | -7 | -3 |
đ/c | tm | tm | tm | tm |
vậy...........
BÀI LÀM CHO CẢ 2 PHẦN LUÔN NHÉ
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=\frac{1}{1}-\frac{1}{50}\)
\(A=\frac{50}{50}-\frac{1}{50}=\frac{49}{50}\)
bài 2 tính trong ngoặc tương tự bài trên rồi tìm x
bài 3
vì giá trị nguyên của x để B là 1 số nguyên
\(\Rightarrow x+4⋮x+3\)
lập bảng
Bài 1:
Gọi UCLN (14n+17;21n+25) là d
ta có: 14 n +17 chia hết cho d => 3.(14n+17) chia hết cho d => 42n + 51 chia hết cho d
21 +25 chia hết cho d => 2.( 21+25) chia hết cho d => 42n + 50 chia hết cho d
=> 42n + 51 - 42n - 50 chia hết cho d
=> 1 chia hết cho d
=> \(A=\frac{14n+17}{21n+25}\)là phân số tối giản
Bài 2:
Để B đạt giá trị lớn nhất => 5/ (x-3)^2 + 1 = 5
=> (x-3)^2 + 1 = 1
(x-3)^2 = 0 = 0^2
=> x - 3 = 0
x = 3
KL: x = 3 để B đạt giá trị lớn nhất
\(\left(3x-1\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)
\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)
Sai đề. Tìm x mà lại cho n? Mình sửa lại là tìm n nhé
Để \(\frac{n-8}{n+3}\)là một số nguyên, \(n-8\)phải chia hết cho \(n+3\)
\(\Rightarrow n-8⋮n+3\)
\(\Rightarrow n-8-n+3⋮n+3\)
\(\Rightarrow11⋮n+3\Rightarrow n+3\inƯ\left(11\right)\)
\(Ư\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(+n+3=1\Rightarrow n=1-3=-2\)
\(+n+3=-1\Rightarrow n=\left(-1\right)-3=-4\)
\(+n+3=11\Rightarrow n=11-3=8\)
\(+n+3=-11\Rightarrow n=-11-3=-14\)
\(\Rightarrow n\in\left\{-2;-4;8;-14\right\}\)
\(Để\frac{n-8}{n+3}\in Z\)
\(\Rightarrow n-8⋮n+3\)
\(\Rightarrow n+3-11⋮n+3\)
Do \(n+3⋮n+3\Rightarrow11⋮n+3\)
\(\Rightarrow n+3\in\left(1;-1;11;-11\right)\)
\(\Rightarrow n\in\left(-2;-4;8;-14\right)\)
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
a) => 3x + 7 chia hết cho x-1
<=> 3 (x-1 ) + 10 chia hết cho x -1
<=> 10 chia hết cho x-1
=> x -1 thuộc Ư(10)= ( 1 ;2;5;10)
=> x thuộc (2;3;6;11)