Chứng minh rằng
2^10+2^11+2^12 chia hết cho 28
(8^10-8^9-8^8) chia hết cho 55 là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 210 + 211 + 212 = 210.(1 + 2 + 22) = 210.7 chia hết cho 7
b) 810 - 89 - 88 = 88.(82 - 8 - 1) = 88.55 chia hết cho 55
a/ 8^7-2^18=1835008 chia hết cho 14=131072
b/10^6-5^7=921875 chia hết cho 59=15625
7^6+7^5-7^4=132055 hết cho 55=2401
a) 8^7-2^18= (2^3)-2^18=2^21-2^18=2^17 * (2^4-2)=2^17 * 14
14 chia hết cho 14 => ĐPCM
b) 10^6-5^7=5^6(2^6 - 5)=5^6 * 59
59 chia hết 59 => ĐPCM
c) 7^6 + 7^5 - 7^4 = 7^4 ( 7^2 + 7 - 1) = 7^4 * 55
55 cha hết 5 => ĐPCM
d) 16^5 + 2^15 = (2^4)^5 + 2^15= 2^15 * ( 2^5 + 1) = 2^15 * 33
33 chia hết 33 => ĐPCM
e và f chịu
g thì tính chữ số tận cùn của tổng đó
h) = 2^10 * (1 + 2 + 2^2) = 2^10 * 7
7 chia hết cho 7 => nó là 1 số tự nhiên
i chịu
a) Vì \(45=BCNN\left(5,9\right);ƯCLN\left(5,9\right)=1\)
Ta có :
\(36^{36}-9^{10}⋮9\) \(\left(1\right)\)
Mặt khác :
\(36^{36}=\left(......6\right)\)
\(9^{10}=\left(9^2\right)^5=81^5=\left(.......1\right)\)
Từ \(\Rightarrow36^{36}-9^{10}=\left(.....6\right)-\left(...1\right)=\left(.....5\right)⋮5\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Rightarrow36^{36}-9^{10}⋮45\rightarrowđpcm\)
b) Ta có :
\(7^{1000}=\left(7^2\right)^{500}=49^{500}\)
\(3^{1000}=\left(3^2\right)^{500}=9^{500}\)
Ta có lũy thừa tận cùng là 9 khi nâng lên lũy thừa bặc lũy thừa chẵn chữ số tận cùng sẽ là 1
\(\Rightarrow\left\{{}\begin{matrix}49^{500}=\left(....1\right)\\9^{500}=\left(....1\right)\end{matrix}\right.\)
\(\Rightarrow7^{1000}-3^{1000}=\left(.....1\right)-\left(...1\right)=\left(...0\right)⋮10\)
Vậy \(7^{1000}-3^{1000}⋮10\rightarrowđpcm\)
Bài 1 :
a)
Chứng minh chiều \("\Rightarrow"\) :
Ta có : \(abcd⋮99\Rightarrow ab.100+cd⋮99\)
\(\Rightarrow99ab+ab+cd⋮99\)
Mà : \(99ab⋮99\Rightarrow ab+cd⋮99\) ( đpcm )
Chứng minh chiều \("\Leftarrow"\) :
Ta có : \(ab+cd⋮99\)
\(\Rightarrow99ab+ab+cd⋮99\)
\(\Rightarrow100ab+cd⋮99\)
hay : \(abcd⋮99\) ( đpcm )
b) Ta có :
\(abcd=1000a+100b+10c+d\)
\(=100ab+cd\)
\(=200cd+cd=201cd\)
Mà \(201⋮67\Rightarrow ab=2cd⋮67\) ( đpcm )
c) Gọi số tự nhiên ba chữ số đó là \(aaa\)
Ta có : \(aaa=a.111=a.37.3⋮37\)
\(\Rightarrow\) Mọi số tự nhiên có 3 chữ số giống nhau đều chia hết cho 37 ( đpcm )
\(2^{10}+2^{11}+2^{12}\)
\(=2^9.\left(2+2^2+2^3\right)\)
\(=2^9.14\)
\(=2^8.28\)
Ta có: \(28⋮28\)
\(\Rightarrow2^8.28⋮28\)
\(\Rightarrow2^{10}+2^{11}+2^{12}⋮28\)
đpcm
\(8^{10}-8^9-8^8\)
\(=8^8.\left(8^2-8-1\right)\)
\(=8^8.55\)
Ta có: \(55⋮55\)
\(\Rightarrow8^8.55⋮55\)
\(\Rightarrow8^{10}-8^9-8^8⋮55\)
đpcm
Tham khảo nhé~
\(2^{10}+2^{11}+2^{12}=2^8\left(4+8+16\right)=2^8\cdot28\)
vi 28 chia het cho 28 nen 28*28 chia het cho 28 suy ra 210+211+212 chia het cho 28
tg tu cau b nha