K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(=x^4+10x^2-9x^2-90\)

\(=\left(x^2+10\right)\left(x^2-9\right)\)

\(=\left(x^2+10\right)\left(x-3\right)\left(x+3\right)\)

c: \(=\left(5x^2-2x\right)^2-\left(5x^2-2x\right)-42\)

\(=\left(5x^2-2x-7\right)\left(5x^2-2x+6\right)\)

\(=\left(x-1\right)\left(5x+7\right)\left(5x^2-2x+6\right)\)

d: \(=\left(x+4y\right)^2+2\left(x+4y\right)-3\)

\(=\left(x+4y+3\right)\left(x+4y-1\right)\)

e: \(=\left(x^2+3x\right)^2+3\left(x^2+3x\right)-4\)

\(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)

24 tháng 8 2019

Câu hỏi của Nguyễn Tấn Phát - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

7 tháng 2 2019

Bài 1 :

Mình nghĩ phải sửa đề ntn :

\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)\right]^2-\left[3\left(x+3\right)\right]^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\7x+23=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{-23}{7}\end{cases}}}\)

Vậy....

b) \(A=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt \(q=x^2+x+1\)ta có :

\(A=q\left(q+1\right)-12\)

\(A=q^2+q-12\)

\(A=q^2+4q-3q-12\)

\(A=q\left(q+4\right)-3\left(q+4\right)\)

\(A=\left(q+4\right)\left(q-3\right)\)

Thay \(q=x^2+x+1\)ta có :

\(A=\left(x^2+x+1+4\right)\left(x^2+x+1-3\right)\)

\(A=\left(x^2+x+5\right)\left(x^2+x-2\right)\)

\(A=\left(x^2+x+5\right)\left(x^2+2x-x-2\right)\)

\(A=\left(x^2+x+5\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)

\(A=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)

7 tháng 2 2019

Cảm ơn ạ><

11 tháng 4 2023

đkxđ: \(\dfrac{x+3}{x-1}\ge0\)

Ptr ⇔\(\left(x-1\right)\left(x+3\right)+\dfrac{2\left(x-1\right)\sqrt{\left(x+3\right)\left(x-1\right)}}{x-1}=8\\ \Leftrightarrow\left(x-1\right)\left(x+3\right)+2\sqrt{\left(x-1\right)\left(x+3\right)}-8=0\) 

Đặt \(\sqrt{\left(x-1\right)\left(x+3\right)}=a\)      (a≥0)

Ptr ⇔ \(a^2+2a-8=0\) 

⇔a=2 (tm) hoặc a=-4 (loại)

\(\sqrt{\left(x-1\right)\left(x+3\right)}=2\)

\(x^2+2x-3=4\)

\(\Leftrightarrow x^2+2x-7=0\)

⇔ \(x=-1+2\sqrt{2}\)        (tm)

hoặc \(x=-1-2\sqrt{2}\) (tm)

Vậy...

31 tháng 10 2016

Bạn ơi , mình cho bạn ví dụ và hướng dẫn cách làm nha 

f(x)=3x3 – 7x2 + 17x–5f(x)

Hướng dẫn:
±1,±5±1,±5 không là nghiệm của f(x)f(x), như vậy f(x)f(x) không  có nghiệm nguyên. Nên f(x)f(x) nếu có nghiệm thì là nghiệm hữu tỉ
Ta nhận thấy x=x= 1313 là nghiệm của f(x)f(x) do đó f(x)f(x) có một nhân tử là  3x–13x–1. Nên
f(x)= 3x– 7x2 + 17x – 5 = 3x3− x2− 6x2 + 2x + 15x − 5f(x)

= 3x3 – 7x2 + 17x – 5 = 3x3 − x2 − 6x2 + 2x + 15x − 5

= (3x3−x2 ) − ( 6x2 −2x ) + (15x−5) = (3x3 − x2) − (6x2 − 2x) + (15x−5)
= x2 ( 3x−1 )− 2x(3x−1) + 5(3x−1) = (3x − 1)(x2 − 2x + 5 )
Vì x2 − 2x + 5 = (x2 − 2x + 1) + 4 = (x−1)2 + 4>0x2 − 2x + 5= (x2 − 2x + 1) + 4= (x−1)2 + 4>0 với mọi xx nên không phân tích được thành nhân tử nữa
 

31 tháng 10 2016

ình muốn giúp lắm nhưng mình......chưa học.mình mới học lớp 7

6 tháng 10 2016

Bạn đưa ra 1 ví dụ đi rồi mình giảng

17 tháng 7 2015

Đặt x^2 + 2x = y thay vào ta có:

 y(y+4) + 3 = y^2 + 4y +3 = y^2 + y + 3y + 3 = y(y+1) + 3(y + 1) = ( y + 3)( y+ 1)

Thay y = x^2 + 2x ta có

 ( x^2 + 2x + 3)(x^2 + 2x+ 1) = ( x^2 + 2x + 3) (x+ 1)^2

Đúng cho mình nha

15 tháng 10 2020

\(\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)

Đặt \(x^2+2x+2=t\)

\(\Rightarrow\left(t-2\right)\left(t+2\right)+3=t^2-4+3=t^2-1=\left(t-1\right)\left(t+1\right)\)

\(=\left(x^2+2x+2-1\right)\left(x^2+2x+2+1\right)\)

\(=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)

\(=\left(x+1\right)^2.\left(x^2+2x+3\right)\)

26 tháng 7 2018

a,  x2+2xy+y2+2x+2y-15

<=> (x+y )2+2(x+y)+1-16

Đặt x+y =a

<=> a2+2a+1-42

<=> (a+1)2-42

<=> (a+5)(a-3) =>( x+y+5)(x+y-3)

b, x2-4xy+4y2-2x-4y-35

<=> (x-2y)2-2(x-2y)+1-36

Đặt (x-2y)  =b 

=> b2-2b+1-62

<=> (b-1)2-62

<=> (b-7)(b+5)=> (x-2y-7)(x-2y+5)

c, 

26 tháng 7 2018

a,A= x^2+2xy+y^2+2x+2y-15

= (x+y)^2+(x+y)-15

Đặt x+y=a, ta có:

A=a^2+2a-15

  =a^2+2a+1-16

  =(a+1)^2-4^2

  =(a+1+4)(a+1-4)

  =(a+5)(a-3)

Thay a=x+y, ta có: A=(x+y+5)(x+y-3).