Cho s=1/3x3+1/4x4+1/5x5+...+1/20x20 Chứng tỏ s<1/2;s>1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy:
1/2*2<1/1*2)vì 2*2>1*2).
1/3*3<1/2*3(vì 3*3>2*3).
...
1/8*8<1/7*8(vì 8*8>7*8).
=>1/2*2+1/3*3+1/4*4+...+1/8*8<1/1*2+1/2*3+1/3*4+...+1/7*8.
=>B<1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8.
=>B<1-1/8.
=>B<7/8.
Mà 7/8<1.
=>B<1.
Vậy B<1(đpcm).
đặt \(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+\frac{1}{7.7}+\frac{1}{8.8}=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
\(A
\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2021.2021}\)
\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2021^2}\)
Xét : \(\frac{1}{k^2}\left(k\inℕ^∗\right)\)
\(=\frac{4}{4k^2}< \frac{4}{4k^2-1}=\frac{4}{\left(2k-1\right)\left(2k+1\right)}==2\left(\frac{1}{2k-1}-\frac{1}{2k+1}\right)\)
Áp dụng cho biểu thức A,ta có :
\(A< 2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{4041}-\frac{1}{4023}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{4023}\right)=\frac{2}{3}-\frac{2}{4023}< \frac{2}{3}< \frac{3}{4}\)
A= \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{100}=\frac{99}{100}\)
=> A= \(\frac{99}{100}>\frac{25}{26}\)
Ta có: \(n.n!=\left(n+1\right).n!-1.n!=\left(n+1\right)!-n!\)
Suy ra \(A=1+1.1!+2.2!+...+10000.10000!\)
\(=1+2!-1!+3!-2!+...+10001!-10000!\)
\(=10001!\)
1 + 2 x 2 + 3 x 3 + 4 x 4 + 5 x 5 + 6 x 6 + 7 x 7 + 8 x 8 + 9 x 9 + 10 x 10
= 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 + 100
= 385
1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 + 8x8 + 9x9 + 10x10
= 1+4+9+16+25+36+49+64+81+100
=(81+9)+(64+16)+(49+1)+)36+4)+25+100
=90+80+50+40+25 +100
=385
\(S=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+...+\frac{1}{20.20}\)
Ta có: \(\frac{1}{2}-\frac{1}{3}>\frac{1}{3.3}>\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{3}-\frac{1}{4}>\frac{1}{4.4}>\frac{1}{4}-\frac{1}{5}\)
\(\frac{1}{4}-\frac{1}{5}>\frac{1}{5.5}>\frac{1}{5}-\frac{1}{6}\)
...................................
\(\frac{1}{19}-\frac{1}{20}>\frac{1}{20.20}>\frac{1}{20}-\frac{1}{21}\)
Cộng theo vế ta được:
\(\frac{1}{2}-\frac{1}{20}>S>\frac{1}{3}-\frac{1}{21}\)\(\Rightarrow\)\(\frac{1}{2}>S>\frac{1}{4}\)