K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

Ta thấy:

1/2*2<1/1*2)vì 2*2>1*2).

1/3*3<1/2*3(vì 3*3>2*3).

...

1/8*8<1/7*8(vì 8*8>7*8).

=>1/2*2+1/3*3+1/4*4+...+1/8*8<1/1*2+1/2*3+1/3*4+...+1/7*8.

=>B<1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8.

=>B<1-1/8.

=>B<7/8.

Mà 7/8<1.

=>B<1.

Vậy B<1(đpcm).

10 tháng 5 2017

\(< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)

\(\Rightarrow1-\frac{1}{8}< 1\)

=>B<1

19 tháng 6 2018

Ta có:

1/5×5 < 1/4×5

1/6×6 < 1/5×6

1/7×7 < 1/6×7

.........

1/100×100 < 1/99×100

=> 1/5×5 + 1/6×6 + 1/7×7 +.....+ 1/100×100 < 1/4×5 + 1/5×6 + 1/6×7 +.....+ 1/99×100

                                      = 1/4-1/5 + 1/5-1/6 + 1/6-1/7 +......+ 1/99-1/100

                                    = 1/4-1/100 < 1/4  

=> 1/5×5 + 1/6×6+1/7×7 +...+1/100×100<1/4  (1)

Lại có:

1/5×5 > 1/6×7

1/6×6 > 1/7×8

1/7×7 > 1/8×9

........

1/100×100 > 1/101×102

=> 1/5×5 + 1/6×6 + 1/7×7 +.....+ 1/100×100 > 1/5×6 + 1/6×7 + 1/7×8  +.....+1/100×101

                                   = 1/5-1/6 + 1/6-1/7 + 1/7-1/8 +.....+ 1/100 - 1/101

                                   = 1/5 - 1/101 > 1/5 - 1/30 = 1/6

=> 1/5×5 + 1/6×6 +1/7×7 +.....+ 1/100×100>1/6 (2)

Từ (1) và (2)

=> 1/6 < 1/5×5 +1/6×6+ 1/7×7 +...+1/100×100<1/4

19 tháng 6 2018

Đặt \(A=\frac{1}{5.5}+\frac{1}{6.6}+...+\frac{1}{100.100}\)

Có \(\frac{1}{5.5}< \frac{1}{4.5};\frac{1}{6.6}< \frac{1}{5.6};...;\frac{1}{100.100}< \frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)(1)

Lại có :\(\frac{1}{5.5}>\frac{1}{5.6};\frac{1}{6.6}>\frac{1}{6.7};...;\frac{1}{100.100}>\frac{1}{100.101}\)

\(\Rightarrow A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\left(2\right)\)

Từ (1) và (2) \(\RightarrowĐCCM\)

7 tháng 7 2017

 \(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+....+\frac{1}{10\cdot10}\)

Ta có : 

\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

\(\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)

.....................................

\(\frac{1}{10\cdot10}< \frac{1}{9\cdot10}\)

Ta có : 

\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)

\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{1}{1}-\frac{1}{10}\)

\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{9}{10}\)

\(\Rightarrow\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{9}{10}< 1\)

11 tháng 6 2018

Đặt \(B=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{10.10}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow B< 1-\frac{1}{10}< 1\)

\(\Rightarrow B< 1\left(đpcm\right)\)

27 tháng 1 2019

A=B vì( a=1/2013 ; b=1/2013)

1 tháng 6 2018

Câu hỏi của Hoàng Đỗ Việt - Toán lớp 6 | Học trực tuyến

Bài 1 :

Ta có;\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}>\frac{1}{30}.10=\frac{1}{3}\)

\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{60}.30>\frac{1}{30}.24=\frac{2}{5}\)

Do đó :

\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}>\frac{1}{3}+\frac{2}{5}=\frac{11}{15}\left(1\right)\)

Mặt khác :

\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}< \frac{1}{20}.20=1\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}< \frac{1}{40}.20=\frac{1}{2}\)

Do đó :

\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}< 1+\frac{1}{2}=\frac{3}{2}\left(2\right)\)

Từ (1 ) và (2) ta suy ra điều phải chứng minh

Bài 2 : 

Đặt \(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}\)

MỘT MẶT ,TA CÓ THỂ VIẾT

\(S=\left(1+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\)\(+\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}\right)\)\(+\left(\frac{1}{33}+\frac{1}{34}+...+\frac{1}{63}+\frac{1}{64}\right)-\frac{1}{64}\)

\(>\frac{1}{2}.2+\frac{1}{4}.2+\frac{1}{8}.4+\frac{1}{16}.8+\frac{1}{32}.16+\frac{1}{64}.32-\frac{1}{64}\)\(=\frac{7}{2}-\frac{1}{64}=\frac{223}{64}>\frac{192}{64}=3\left(1\right)\)

Mặt khác ,ta lại có\(S=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)\)\(+\left(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}\right)\)\(+\left(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{63}\right)< \)\(1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+\frac{1}{16}.16+\frac{1}{32}.32=6\left(2\right)\)

Từ (1) và (2 ) ta kết luận \(3< S< 6\)

Chúc bạn học tốt ( -_- )

17 tháng 4 2016

a)đặt B=1/2.3+1/3.4+...+1/99.100

=1/1.2+1/2.3+1/3.4+...+1/99.100

=1-1/2+1/2-1/3+...+1/99-1/100

=1-1/100<1 (1)

Mà 1<2(2)

A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)

từ (1),(2),(3) =>A<2

b,c tự làm

17 tháng 4 2016

Thế mà ko biết làm