CMR : Trong k số nguyên liên tiếp , có 1 và chỉ một số chia hết cho k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số nguyên đầu tiên là a
số nguyên tiếp theo là a+1;a+2;...a+k-1
thực hiện phép chia a cho k ta được
a=kq+r với r=0;1;2;...k-1
từ đó ta có đpcm
C)gọi 3 số nguyên liên tiếp lần lượt là a, a+1 ,a+2
ta có:
a+(a+1)+(a+2)
=3a+3
=3(a+1) => chia hết cho 3
d) Gọi 5 số nguyên liên tiếp ần lượt là a, a+1, a+2, a+3, a+4
Ta có: a + a+1 + a+2 +a+3 +a+4
=5a +10
=5(a+2) => chi hết cho 5
a ) Gọi 2 số nguyên liên tiếp lần lượt là a và a + 1
* Nếu a là số chẵn => a chia hết cho 2
* Nếu a là số lẻ => a + 1 là số chẵn => a + 1 chia hết cho 2
Vậy trong 2 số nguyên liên tiếp có 1 số chia hết cho 2 .
b ) Gọi 3 số nguyên liên tiếp lần lượt là a , a + 1 và a + 2
* Nếu a chia hết cho 3 thì bài toán luôn đúng
* Nếu a chia 3 dư 1 thì a = 3k +1
=> a + 2 = 3k + 1 + 2 = 3k + 3
=> a + 2 chia hết cho 3
* Nếu a chia 3 dư 2 thì a = 3k + 2
=> a + 1 = 3k + 2 + 1 = 3k + 3
=> a + 1 chia hết cho 3
Vậy trong 3 số nguyên liên tiếp có 1 số chia hết cho 3 .
a,
Gọi 2 số nguyên liên tiếp lần lượt là a và a+1
* Nếu a là số chẵn => a chia hết cho 2
* Nếu a là số lẻ => a + 1 là số chẵn => a+1 chia hết cho 2
Vậy trong 2 số nguyên liên tiếp có 1 số chia hết cho 2
b,
Gọi 3 số nguyên liên tiếp lần lượt là a, a+1 và a+2
*Nếu a chia hết cho 3 thì bài toán luôn đúng
*Nếu a chia 3 dư 1 thì a = 3k +1
=> a + 2 = 3k + 1 + 2 = 3k + 3
=> a + 2 chia hết cho 3
*Nếu a chia 3 dư 2 thì a = 3k + 2
=> a +1 = 3k + 2 + 1 = 3k + 3
=> a + 1 chia hết cho 3
Vậy trong 3 số nguyên liên tiếp có 1 số chia hết cho 3
Xét Ví dụ:
3,4,5,6 có 4\(⋮\)4
Lấy thêm ví dụ tương tự sẽ CM đc điều cần CM
Mk chỉ bt thế thôi
Xét, Ví dụ :
3;4;5;6; có 4 : 4
Lấy thêm ví dụ tương tự sẽ CM đc điều cần CM
__Giải__
k là số nguyên liên tiếp có dạng : n , n + 1 , n + 2 ,..., n + k - 1 ( 1)
Ta CM 2 phần như sau :
+) Trong dãy ( 1) , bao giờ cũng có 1 số chia hết cho k
Số n có thể viết : n = kq + r với 0 ≤ r ≤ k ( r là số dư khi chia n cho k)
- Nếu r = 0 thì n ⋮k
- Nếu r # 0 , ta xét số : n' = n + ( k - r) . Vì 0 < r < k , nên 0<k - r ≤ k - 1
⇒ n' là 1 số thuộc dãy ( 1)
Nghĩa là nếu r # 0 thì n' = n + ( k - r) ⋮ k
2. giả sử trong dãy (1) chỉ có 2 số m và p cùng chia hết cho k , và giả sử m > q ⇒ hiệu của m - p ⋮ k
Trong dãy ( 1) , hiệu giữa số lớn nhất và số nhỏ nhất : 0 < m - p ≤ k - 1 . và số m - p này ko thể ⋮ k
Từ đó đúng rằng trong dãy ( 1) có nhiều nhất là 1 số ⋮ k .
Từ phần 1 ; 2 => đpcm
P/S : Tui làm bừa nhoa .