Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số nguyên đầu tiên là a
số nguyên tiếp theo là a+1;a+2;...a+k-1
thực hiện phép chia a cho k ta được
a=kq+r với r=0;1;2;...k-1
từ đó ta có đpcm
a) Trong ba số tự nhiên liên tiếp có một số chia hết cho 1, một số chia hết cho 2 và một số chia hết cho 3 nên tích của ba số đó chia hết cho 1x2x3=6
b) Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4, số còn lại chia hết cho 2 = tích 4 số tự nhiên liên tiếp chia hết cho 8. (1)
Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 (2)
Từ (1) và (2) => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8.
Mà 3 và 8 nguyên tố cùng nhau => tích 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3)
Bài này áp dụng tính chất: Nếu a chia hết cho b; a chia hết cho c và b và c nguyên tố cùng nhau
=> a chia hết cho (b.c)
+ 2 số nguyên tố cùng nhau là 2 số có ƯCLN là 1
giả sử trong m số tự nhiên liên tiếp tồn tại ít nhất 2 số P và Q khi chia cho m có cùng số dư là r (m> r >=0), (P>Q)
do đó P-Q<m
P = p.m + r
Q = q.m + r
p>q (Do các số nguyên liên tiếp không bằng nhau);
=> P-Q = (p-q).m >m (mâu thuẫn)
mà m> r >=0 nên trong m số tự nhiên liên tiếp r nhận các giá trị 0; 1;... đến m-1
do đó có duy nhất 1 giá trị r=0 tức là có duy nhất 1 số chia hết cho m....
__Giải__
k là số nguyên liên tiếp có dạng : n , n + 1 , n + 2 ,..., n + k - 1 ( 1)
Ta CM 2 phần như sau :
+) Trong dãy ( 1) , bao giờ cũng có 1 số chia hết cho k
Số n có thể viết : n = kq + r với 0 ≤ r ≤ k ( r là số dư khi chia n cho k)
- Nếu r = 0 thì n ⋮k
- Nếu r # 0 , ta xét số : n' = n + ( k - r) . Vì 0 < r < k , nên 0<k - r ≤ k - 1
⇒ n' là 1 số thuộc dãy ( 1)
Nghĩa là nếu r # 0 thì n' = n + ( k - r) ⋮ k
2. giả sử trong dãy (1) chỉ có 2 số m và p cùng chia hết cho k , và giả sử m > q ⇒ hiệu của m - p ⋮ k
Trong dãy ( 1) , hiệu giữa số lớn nhất và số nhỏ nhất : 0 < m - p ≤ k - 1 . và số m - p này ko thể ⋮ k
Từ đó đúng rằng trong dãy ( 1) có nhiều nhất là 1 số ⋮ k .
Từ phần 1 ; 2 => đpcm
P/S : Tui làm bừa nhoa .