Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thiếu đề. tích hay tổng hay hiệu hay thương của 3 số tự nhiên ... ?
__Giải__
k là số nguyên liên tiếp có dạng : n , n + 1 , n + 2 ,..., n + k - 1 ( 1)
Ta CM 2 phần như sau :
+) Trong dãy ( 1) , bao giờ cũng có 1 số chia hết cho k
Số n có thể viết : n = kq + r với 0 ≤ r ≤ k ( r là số dư khi chia n cho k)
- Nếu r = 0 thì n ⋮k
- Nếu r # 0 , ta xét số : n' = n + ( k - r) . Vì 0 < r < k , nên 0<k - r ≤ k - 1
⇒ n' là 1 số thuộc dãy ( 1)
Nghĩa là nếu r # 0 thì n' = n + ( k - r) ⋮ k
2. giả sử trong dãy (1) chỉ có 2 số m và p cùng chia hết cho k , và giả sử m > q ⇒ hiệu của m - p ⋮ k
Trong dãy ( 1) , hiệu giữa số lớn nhất và số nhỏ nhất : 0 < m - p ≤ k - 1 . và số m - p này ko thể ⋮ k
Từ đó đúng rằng trong dãy ( 1) có nhiều nhất là 1 số ⋮ k .
Từ phần 1 ; 2 => đpcm
P/S : Tui làm bừa nhoa .
Gọi a, a+1, a+2 lần lượi là 3 số nguyên liên tiếp ( a thuộc Z)
Tích a(a+1)(a+2) chia hết cho 3 khi một trong ba số trên chia hết cho 3.
Một số chia cho 3 thì có 3 trường hợp:
- a chia hết cho 3
- giả sử a chia 3 dư 1 thì (a+1) chia hết cho 3 => tích a(a+1)(a+2) chia hết cho 3.
- giả sử a chia 3 dư 2 thì (a+2) chia hết cho 3 => tích a(a+1)(a+2) chia hết cho 3.
=> Tích a(a+1)(a+2) luôn chia hết cho 3. (1)
Mà 3 trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 2 (2)
Vì ƯCLN(3;2) 1 nên từ (1) và (2) suy ra 3 số nguyên liên tiếp chia hết cho (2 . 3) = 6
a) Trong ba số tự nhiên liên tiếp có một số chia hết cho 1, một số chia hết cho 2 và một số chia hết cho 3 nên tích của ba số đó chia hết cho 1x2x3=6
b) Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4, số còn lại chia hết cho 2 = tích 4 số tự nhiên liên tiếp chia hết cho 8. (1)
Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 (2)
Từ (1) và (2) => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8.
Mà 3 và 8 nguyên tố cùng nhau => tích 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3)
Bài này áp dụng tính chất: Nếu a chia hết cho b; a chia hết cho c và b và c nguyên tố cùng nhau
=> a chia hết cho (b.c)
+ 2 số nguyên tố cùng nhau là 2 số có ƯCLN là 1
a)Goi day so la a; a+1; a+2; ...; a+n
Dem tung so cua day so tren chia cho n thi co 1 so chi het cho n
Goi so do la a+k (k thuoc N va k>=1 va k <=n)
=> (a+1)(a+2)...(a+k)...(a+n-1)(a+n) chia het cho n
b)Tong cua n so nguyen lien tiep khong chia het cho n vi gia su n=6 thi 1+2+3+4+5+6=21 khong chia het cho 6
Gọi số nguyên đầu tiên là a
số nguyên tiếp theo là a+1;a+2;...a+k-1
thực hiện phép chia a cho k ta được
a=kq+r với r=0;1;2;...k-1
từ đó ta có đpcm