Trong mp Oxy , cho A(-8;5) . Tìm ảnh A' của A qua phép đối xứng tâm O
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\overrightarrow{a}=-2\overrightarrow{i}+3\overrightarrow{j}=-2(1,0)+3(0,1)=(-2.1+3.0, -2.0+3.1)=(-2,3)\)
Do I thuộc Oy nên tọa độ có dạng \(I\left(0;y\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{IA}=\left(1;3-y\right)\\\overrightarrow{BI}=\left(2;y+3\right)\end{matrix}\right.\)
\(\Rightarrow IA+IB=\sqrt{1+\left(3-y\right)^2}+\sqrt{2^2+\left(y+3\right)^2}\ge\sqrt{\left(1+2\right)^2+\left(3-y+y+3\right)^2}=3\sqrt{5}\)
Dấu "=" xảy ra khi \(\dfrac{2}{1}=\dfrac{y+3}{3-y}\Rightarrow y=1\Rightarrow I\left(0;1\right)\)
Cách khác:
Do A và B nằm khác phía so với Oy
\(\Rightarrow IA+IB\) đạt giá trị nhỏ nhất khi A, I, B thẳng hàng
Hay I là giao điểm của đường thẳng AB và trục Oy
\(\overrightarrow{BA}=\left(3;6\right)=3\left(1;2\right)\Rightarrow\) đường thẳng AB nhận \(\left(2;-1\right)\) là 1 vtpt
Phương trình AB:
\(2\left(x-1\right)-1\left(y-3\right)=0\Leftrightarrow2x-y+1=0\)
I là giao điểm AB và Oy nên tọa độ là nghiệm của hệ:
\(\left\{{}\begin{matrix}2x-y+1=0\\x=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
\(\Rightarrow I\left(0;1\right)\)
\(AB=\sqrt{\left(1+1\right)^2+\left(2-2\right)^2}=2\)
\(AC=\sqrt{\left(2+1\right)^2+\left(-3-2\right)^2}=\sqrt{34}\)
\(BC=\sqrt{\left(2-1\right)^2+\left(-3-2\right)^2}=\sqrt{26}\)
\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{3}{\sqrt{34}}\)
=>\(sinBAC=\dfrac{5\sqrt{34}}{34}\)
\(S_{ABC}=\dfrac{1}{2}\cdot2\cdot\sqrt{34}\cdot\dfrac{5}{\sqrt{34}}=5\)
Ta có:
\(\left\{{}\begin{matrix}\dfrac{x'+\left(-8\right)}{2}=0\\\dfrac{y'+5}{2}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x'=8\\y'=-5\end{matrix}\right.\)
\(\Rightarrow A'\left(8;-5\right)\)