cho \(a^2+b^2+c^2=a^3+b^3+c^3=1\)
Tính \(S=a^2+b^{2012}+c^{2013}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow a,b,c\in\left\{-1;1\right\}\\ \Rightarrow a^3+b^3+c^3-\left(a^2+b^2+c^2\right)\\ =a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)\le0\\ \Rightarrow a^3+b^3+c^3\le1\\ \Rightarrow a,b,c.nhận.2.Giá.trị.là.0.hay.1\\ \Rightarrow b^{2012}=b^2;c^{2013}=c^2\\ \Rightarrow S=a^2+b^{2012}+c^{2013}=1\)
Ta có: \(a^2+b^2+c^2=1\)
⇒ \(\left\{{}\begin{matrix}\left|a\right|\text{≤}1\\\left|b\right|\text{≤}1\\\left|c\right|\text{≤}1\end{matrix}\right.\)
Mặt khác:
\(a^2+b^2+c^2=a^3+b^3+c^3=1\)
⇒ \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0\)
Vì \(\left\{{}\begin{matrix}1-a\text{≥}0\\1-b\text{≥}0\\1-c\text{≥}0\end{matrix}\right.\)
⇒ \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\text{≥}0\)
Dấu "=" ⇔ 1 số bằng 1 và 2 số còn lại bằng 0
⇒ \(S=1\)
Không mất tính tổng quát ta coi a >= b >= c. Khi đó a^2 + b^2 + c^2 = 1 nên |a|,|b|,|c| <= 1; thành thử
a^2 >= a^3,
b^2 >= b^3,
c^2 >= c^3
và từ đó ta có
a^2 + b^2 + c^2 >= a^3 + b^3 + c^3 = 1;
cùng với giả thiết a^2 + b^2 + c^2 = 1 ta suy ra a^2 = a^3, b^2 = b^3, c^2 = c^3 và a^2 + b^2 + c^2 = 1; và vì a >= b >= c nên suy ra a = 1, b = c = 0.
Từ đó
A = 1^2013 + 0^2013 + 0^2013 = 1.
\(a^2+b^2+c^2=a^3+b^3+c^3 \Rightarrow a^2(1-a)+b^2(1-b)+c^2(1-c)=0(1)\)
Mà \(a^2+b^2+c^2=1\) nên \(a\leq1\),\(b\leq1\),\(c\leq1\)( do \(a^2 \geq 0\))=>\(1-c\leq0\)
hay \(a^2(1-a) \leq 0\), \(b^2(1-b) \leq 0\), \(c^2(1-c) \leq 0\)
\(\Rightarrow a^2(1-a)+b^2(1-b)+c^2(1-c) \leq 0(2)\)
Từ (1)(2) suy ra (1) xảy ra khi và chỉ khi 1 trong 3 số bằng 1 và 2 số còn lại bằng 0.
Nên P=1.
Vì \(a^2+b^2+c^2=a^3+b^3+c^3=1\Rightarrow a^2-a^3+b^2-b^3+c^2-c^3=0\)\(\Rightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0\left(1\right).\)
Do \(a^2\ge0,b^2\ge0,c^2\ge0\Rightarrow0\le a^2,b^2,c^2\le1\Rightarrow0\le a,b,c\le1.\)\(\Rightarrow0\le1-a,1-b,1-c\le1\Rightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\left(2\right).\)
Từ (1) và (2) => đẳng thức phải xảy ra ở (2), khi:
\(\hept{\begin{cases}a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)=0\\a^2+b^2+c^2=a^3+b^3+c^3=0\end{cases}}\)\(\Leftrightarrow\)Trong 3 số a, b, c có 1 số bằng 1, 2 số còn lại bằng 0.
Vậy \(S=a^2+b^{2012}+c^{2013}=1+0+0=1.\)
Tết rồi còn hok
\(a^2+b^2+c^2=1\Rightarrow a^2;b^2;c^2\le1\Rightarrow-1\le a;b;c\le1\)\(\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)
Từ \(a^2+b^2+c^2=a^3+b^3+c^3=1\Rightarrow a^2+b^2+c^2-a^3-b^3-c^3=0\)
\(\Leftrightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0\)
Mà \(1-a;1-b;1-b\ge0\) (cmt)
nên \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
\(\Rightarrow a^2+b^{2012}+c^{2013}=3\)
do \(a^2+b^2+c^2=a^3+b^3+c^3=1\)
=> a;b;c\(\in\left\{-1;1\right\}\)
=> \(a^3+b^3+c^3-\left(a^2+b^2+c^2\right)=a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)\le0\)=>\(a^3+b^3+c^3\le1\)
=> a;b;c nhận 2 giá trị 1;0
=> S=1