Cho pt ẩn x: x^2-2mx+4=0 (1)
A) giải pt đã cho khi m=3
B) tìm gtrị của m để pt (1) có hai nghiệm x1,x2 thoả mãn: (x1+1)^2+(x2+1)^2=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Thay m=1 vào phương trình, ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1
1) Bạn tự làm
2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)
a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy ...
b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)
\(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)
Vậy ...
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
a/ Thay m = 1 vào pt ta được: x2 + 2 = 0 => x2 = -2 => pt vô nghiệm
b/ Theo Vi-ét ta được: \(\begin{cases}x_1+x_2=2m-2\\x_1.x_2=m+1\end{cases}\)
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\) \(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=4\) \(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\) \(\Leftrightarrow\frac{\left(2m-2\right)^2-2\left(m+1\right)}{m+1}=4\) \(\Leftrightarrow\frac{4m^2-8m+4-2m-2}{m+1}=4\) \(\Leftrightarrow4m^2-10m+2=4m+4\) \(\Leftrightarrow4m^2-14m-2=0\)
Giải denta ra ta được 2 nghiệm: \(\begin{cases}x_1=\frac{7+\sqrt{57}}{4}\\x_2=\frac{7-\sqrt{57}}{4}\end{cases}\)
Khi m=1 ta có : \(x^2-2=0\Leftrightarrow x=\pm\sqrt{2}\)
Pt 2 nghiệm x1 ; x2 thỏa mãn : \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\) \(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1+x_2}=4\Leftrightarrow\frac{x_1^2+x_2^2-2x_1x_2+2x_1x_2}{x_1+x_2}=4\) \(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1+x_2}=4\) (1)
Theo viet ta có: \(x_1x_2=\frac{c}{a}=\left(m+1\right)\); \(x_1+x_2=\frac{-b}{a}=2\left(m+1\right)\)
Thay vài (1) ta có: \(\frac{\left[2\left(m+1\right)\right]^2-2\left(m-1\right)}{2\left(m+1\right)}=4\) \(\Leftrightarrow4\left(m^2+2m+1\right)-2m+1=8\left(m+1\right)\Leftrightarrow4m^2+6m+5-8m-8=0\) \(\Leftrightarrow4m^2-2m-3=0\Leftrightarrow\left[\begin{array}{nghiempt}m=\frac{1+\sqrt{13}}{4}\\m=\frac{1-\sqrt{13}}{4}\end{array}\right.\)
a: Khi m = -4 thì:
\(x^2-5x+\left(-4\right)-2=0\)
\(\Leftrightarrow x^2-5x-6=0\)
\(\Delta=\left(-5\right)^2-5\cdot1\cdot\left(-6\right)=49\Rightarrow\sqrt{\Delta}=\sqrt{49}=7>0\)
Pt có 2 nghiệm phân biệt:
\(x_1=\dfrac{5+7}{2}=6;x_2=\dfrac{5-7}{2}=-1\)
a.Bạn thế vào nhé
b.\(\Delta=3^2-4m=9-4m\)
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)
c.Ta có: \(x_1=-1\)
\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)
d.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)
1/ \(x_1^2+x_2^2=34\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)
\(\Leftrightarrow\left(-3\right)^2-2m=34\)
\(\Leftrightarrow m=-12,5\)
..... ( Các bài kia tương tự bạn nhé )
Bài 1:
a, Thay m=-1 vào (1) ta có:
\(x^2-2\left(-1+1\right)x+\left(-1\right)^2+7=0\\
\Leftrightarrow x^2+1+7=0\\
\Leftrightarrow x^2+8=0\left(vô.lí\right)\)
Thay m=3 vào (1) ta có:
\(x^2-2\left(3+1\right)x+3^2+7=0\\ \Leftrightarrow x^2-2.4x+9+7=0\\ \Leftrightarrow x^2-8x+16=0\\ \Leftrightarrow\left(x-4\right)^2=0\\ \Leftrightarrow x-4=0\\ \Leftrightarrow x=4\)
b, Thay x=4 vào (1) ta có:
\(4^2-2\left(m+1\right).4+m^2+7=0\\ \Leftrightarrow16-8\left(m+1\right)+m^2+7=0\\ \Leftrightarrow m^2+23-8m-8=0\\ \Leftrightarrow m^2-8m+15=0\\ \Leftrightarrow\left(m^2-3m\right)-\left(5m-15\right)=0\\ \Leftrightarrow m\left(m-3\right)-5\left(m-3\right)=0\\ \Leftrightarrow\left(m-3\right)\left(m-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=3\\m=5\end{matrix}\right.\)
c, \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m^2+7\right)=m^2+2m+1-m^2-7=2m-6\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2m-6\ge0\Leftrightarrow m\ge3\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+7\end{matrix}\right.\)
\(x_1^2+x_2^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-2\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-2m^2-14=0\\ \Leftrightarrow2m^2+8m-10=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-5\left(ktm\right)\end{matrix}\right.\)
\(x_1-x_2=0\\ \Leftrightarrow\left(x_1-x_2\right)^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-4\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-4m^2-28=0\\ \Leftrightarrow8m=28=0\\ \Leftrightarrow m=\dfrac{7}{2}\left(tm\right)\)
Bài 2:
a,Thay m=-2 vào (1) ta có:
\(x^2-2x-\left(-2\right)^2-4=0\\ \Leftrightarrow x^2-2x-4-4=0\\ \Leftrightarrow x^2-2x-8=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
b, \(\Delta'=\left(-m\right)^2-\left(-m^2-4\right)\ge0=m^2+m^2+4=2m^2+4>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-4\end{matrix}\right.\)
\(x_1^2+x_2^2=20\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\\ \Leftrightarrow2^2-2\left(-m^2-4\right)=20\\ \Leftrightarrow4+2m^2+8-20=0\\ \Leftrightarrow2m^2-8=0\\ \Leftrightarrow m=\pm2\)
\(x_1^3+x_2^3=56\\ \Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=56\\ \Leftrightarrow2^3-3\left(-m^2-4\right).2=56\\ \Leftrightarrow8-6\left(-m^2-4\right)-56\\ =0\\ \Leftrightarrow8+6m^2+24-56=0\\ \Leftrightarrow6m^2-24=0\\ \Leftrightarrow m=\pm2\)
\(x_1-x_2=10\\ \Leftrightarrow\left(x_1-x_2\right)^2=100\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-100=0\\ \Leftrightarrow2^2-4\left(-m^2-4\right)-100=0\\ \Leftrightarrow4+4m^2+16-100=0\\ \Leftrightarrow4m^2-80=0\\ \Leftrightarrow m=\pm2\sqrt{5}\)
a, Khi m = 2
pt trở thành : x^2 - 6x + 4 = 0
<=> (x^2-6x+9) - 5 = 0
<=> (x-3)^2 = 5
<=> x=3+-\(\sqrt{5}\)
Tk mk nha
b) Câu hỏi của Mavis Dracula - Toán lớp 9 - Học toán với OnlineMath
khi m = 3. ta có : x2 - 6x + 4 = 0
\(\Delta\)' = (-3)2 - 4 = 5 > 0
=> pt có 2 nghiệm phân biệt
x1 = 3 - \(\sqrt{5}\)
x2 = 3 + \(\sqrt{5}\)
b) \(\Delta\)' = (-m)2 - 4 = m2 - 4
để pt có nghiệm thì m2 - 4 \(\ge\) 0
<=> m2 \(\ge\) 4
<=> \(\left\{{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)
theo hệ thức vi - ét thì : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=4\end{matrix}\right.\)
ta có : ( x1 + 1 )2 + ( x2 + 1 )2 = 2
<=> x12+ 2x1 + 1 + x22 + 2x2 + 1 = 2
<=> x12 + x22 + 2( x1 + x2 ) = 0
<=> x12 + 2x1x2 + x22 - 2x1x2 + 2( x1 + x2 ) = 0
<=> ( x1 + x2 )2 - 2x1x2 + 2( x1+ x2 ) = 0
<=> (2m)2 - 2.4 + 2.2m = 0
<=> 4m2 + 4m - 8 = 0
nhận thấy a + b + c = 4 + 4 - 8 = 0
<=> pt có 2 nghiệm pb :
m1 = 1 ( loại )
m2 = -2 ( TM )
vậy để pt (1) thỏa mãn ( x1 + 1 )2 + ( x2 + 1 )2 = 2 thì m = -2