Cho đa thức P(x)= ax^2 +bx+c có a-b+c=0. Chứng minh rằng x= -1 là nghiệm của đa thức P(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,a+b+c=0 <=>c=-a-b
Khi đ f(x)=ax^2+bx-a-b
f(x)=a(x^2-1)+b(x-1)=(x-1)(ax+a+b)
=>f(x) có nghiệm x=1
b,a-b+c=0 <=>c=b-a
Khi đó f(x)=ax^2+bx+b-a
f(x)=a(x^2-1)+b(x+1)=(x+1)(ax-a+b)
=>f(x) có nghiệm x=-1
Ta có :
f(1) = a . (-1)2 + b . ( -1 ) + c = a - b + c = 0
Vậy đa thức trên có nghiệm là -1
a) Thay x = 1 ta có :
F(1) = a.1^2 + b.1 + c = a + b + c = 0
Vậy x = 1 là nghiệm của f(x)
b) thay x = -1 ta có :
f(-1) = a. (-1)^2 + b.(-1) + c
= a - b + c = 0
VẬy x = -1 là nghiệm của f(x) nếu a - b + c = 0
\(a)\) Ta có :
\(x^2+x=0\)
\(\Leftrightarrow\)\(x\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
Vậy nghiệm của đa thức \(H\left(x\right)=x^2+x\) là \(x=-1\) hoặc \(x=0\)
\(b)\) Ta có :
\(\left|x\right|\ge0\)
\(\Rightarrow\)\(\left|x\right|+1\ge0+1=1>0\)
Vậy đa thức \(Q\left(x\right)=\left|x\right|+1\) vô nghiệm ( hoặc không có nghiệm )
Chúc bạn học tốt ~
1/a/Cho x^2+x=0
x(x+1)=0
=>x=0 hoặc x+1=0
x=-1
Vậy nghiệm của H(x) là 0;-1
b/Ta có:\(\left|x\right|\ge0\Rightarrow\left|x\right|+1\ge1>0\)0
Vậy Q(x) vô nghiệm
2/P(x)=ax^2+5x-3
P(12)=a.12^2+5.12-3=0
a.144+60-3=0
144a=-57
a=-57:144
a=-19/48
ta có P(-1) = a - b + c = 0 (đpcm)
Ta có:
\(P\left(-1\right)=a\times\left(-1\right)^2+b\times\left(-1\right)+c=a-b+c=0\\ P\left(-1\right)=0\)
Vậy \(x=-1\) là 1 nghiệm của P(x)