K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2015

nhân A với 2:

Lấy A.2-A và ra A=1-(1/2)^2014<1

20 tháng 6 2017

\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)

\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)

\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)

\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)

20 tháng 4 2017

Ta có:

\(A=\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{2013}{2014!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{2014-1}{2014!}\)

\(=\dfrac{2}{2!}-\dfrac{1}{2!}+\dfrac{3}{3!}-\dfrac{1}{3!}+...+\dfrac{2014}{2014!}-\dfrac{1}{2014!}\)

\(=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+...+\dfrac{1}{2013!}-\dfrac{1}{2014!}\)

\(=\dfrac{1}{1!}-\dfrac{1}{2014!}=1-\dfrac{1}{2014!}\)

Do \(1-\dfrac{1}{2014!}< 1\) Nên \(A< 1\)

Vậy \(A=\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{2013}{2014!}< 1\) (Đpcm)

19 tháng 4 2017

tick nhé

25 tháng 2 2018

Mình đoán bạn thi học sinh giỏi. Bạn yên tâm đi, lớp 6 chưa hoc ! ( than cảm) đâu nên cô sẽ ko mắng. Mình cũng thi, cô bảo ko phải làm đó