K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

\(x^4-2x^3+3x^2-2x+1=0\)

Chia cả hai vé cho \(x^2\)

\(\Leftrightarrow x^2-2x+3-\dfrac{2}{x}+\dfrac{1}{x^2}\)

\(\Leftrightarrow x^2+2+\dfrac{1}{x^2}-2\left(x+\dfrac{1}{x}\right)+1=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-2\left(x+\dfrac{1}{x}\right)+1=0\)

Đặt x+1/x = a, ta có:

\(a^2-2a+1=0\)

\(\Leftrightarrow\left(a-1\right)^2=0\)

\(\Leftrightarrow a=1\)

\(\Leftrightarrow x+\dfrac{1}{x}=1\)

\(\Leftrightarrow x^2+1=x\)

\(\Leftrightarrow x^2-x+1=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)

Do \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+3>0\)

Do đó phương trình vô nghiệm

14 tháng 10 2018

\(2x^4-10x^2+17=0\)

\(\Rightarrow4x^4-20x^2+68=0\)

\(\Rightarrow\left(2x-5\right)^2+33=0\)(vô lí)

phần b làm tương tự 

4 tháng 5 2018

1. \(x^4-2x^3+3x^2-2x+1=0\)

\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)+x^2=0\)

\(\Leftrightarrow x^2\left(x-1\right)^2+\left(x-1\right)^2+x^2=0\)

\(\Leftrightarrow\) (x - 1)2 = 0 và x2 = 0

\(\Leftrightarrow\) x - 1 = 0 và x = 0

\(\Leftrightarrow\) x = 1 và x = 0 (vô lí)

Vậy phương trình vô nghiệm.

4 tháng 5 2018

2. \(\left(x^2-4\right)^2=8x+1\)

\(\Leftrightarrow x^4-8x^2+16=8x+1\)

\(\Leftrightarrow x^4-8x^2-8x+15=0\)

\(\Leftrightarrow x^4-x^3+x^3-x^2-7x^2+7x-15x+15=0\)

\(\Leftrightarrow x^3\left(x-1\right)+x^2\left(x-1\right)-7x\left(x-1\right)-15\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2-7x-15\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4x^2-12x+5x-15\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)+4x\left(x-3\right)+5\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2+4x+5\right)=0\)

\(\Leftrightarrow\) x - 1 = 0 hoặc x - 3 = 0 hoặc x2 + 4x + 5 = 0

1) x - 1 = 0 \(\Leftrightarrow\) x = 1

2) x - 3 = 0 \(\Leftrightarrow\) x = 3

3) \(x^2+4x+5=0\left(\text{loại vì }x^2+4x+5=\left(x+2\right)^2+1>0\forall x\right)\)

Vậy tập nghiệm của pt là S = {1;3}.

3 tháng 2 2017

a. \(3-4x\left(25-2x\right)-8x^2+x-300=0\)

\(\Leftrightarrow3-100x+8x^2-8x^2+x-300=0\)

\(\Leftrightarrow-297-99x=0\)

\(\Leftrightarrow x=3\)

Vậy \(n_0\) của PT là: x=3

b. \(\Leftrightarrow\frac{\left(2-6x\right)}{5}-2+\frac{3x}{10}=7-\frac{3x+3}{4}\)

\(\Leftrightarrow\frac{\left(4-12x\right)}{5}-\frac{20}{10}+\frac{3x}{10}=\frac{\left(28-3x-3\right)}{4}\)

\(\Leftrightarrow\frac{\left(-16-9x\right)}{10}=\frac{\left(25-3x\right)}{4}\)

\(\Leftrightarrow-64-36x=250-30x\)

\(\Leftrightarrow-6x=314\)

\(\Leftrightarrow x=-\frac{157}{3}\)

Vậy -\(n_0\) của PT là: \(x=\frac{-157}{3}\)

c. \(5x+\frac{2}{6}-8x-\frac{1}{3}=4x+\frac{2}{5}-5\)

\(\Leftrightarrow-3x=4x-\frac{23}{5}\)

\(\Leftrightarrow7x=\frac{23}{5}\)

\(\Leftrightarrow x=\frac{23}{35}\)

Vậy \(n_0\) của PT là: \(x=\frac{23}{35}\)

d. \(3x+\frac{2}{3}-3x+\frac{1}{6}=2x+\frac{5}{3}\)

\(\Leftrightarrow\frac{5}{6}=2x+\frac{5}{3}\)

\(\Leftrightarrow x=-\frac{5}{12}\)

Vậy \(n_0\) của Pt là: \(x=-\frac{5}{12}\)

6 tháng 3 2020

B1.a/ (x-2)(x^2+2x+2)

     b/ (x+1)(x+5)(x+2)

     c/ (x+1)(x^2+2x+4)

B2.

6 tháng 3 2020

1a) x3 - 2x - 4 = 0

<=> (x3 - 4x) + (2x - 4) = 0

<=> x(x2 - 4) + 2(x - 2) = 0

<=> x(x - 2)(x + 2) + 2(x - 2) = 0

<=> (x - 2)(x2 + 2x + 2) = 0

<=> x - 2 = 0 (vì x2 + 2x + 2 \(\ne\)0)

<=> x = 2

Vậy S = {2}

b) x3 + 8x2 + 17x + 10 = 0

<=> (x3 + 5x2) + (3x2 + 15x) + (2x + 10) = 0

<=> x2(x + 5) + 3x(x + 5) + 2(x + 5) = 0

<=> (x2 + 3x + 2)(x + 5) = 0

<=> (x2 + x + 2x + 2)(x + 5) = 0

<=> (x + 1)(x + 2)(x + 5) = 0

<=> x + 1 = 0 hoặc x + 2 = 0 hoặc x + 5 = 0

<=> x = -1 hoặc x = -2 hoặc x = -5

Vậy S = {-1; -2; -5}

c) x3 + 3x2 + 6x + 4 = 0

<=> (x3 + x2) + (2x2 + 2x) + (4x + 4) = 0

<=> x2(x + 1) + 2x(x + 1) + 4(x + 2) = 0

<=> (x2 + 2x + 4)(x + 2) = 0

<=> x + 2 = 0

<=> x = -2

Vậy S = {-2}

30 tháng 1 2018

a) 2x2-4x-x+2=0

=> 2x(x-2)-(x-2)=0

=> (2x-1)(x-2)=0

=> \(\left[{}\begin{matrix}2x-1=0\\x-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)

b) 3x2-12x+5x-20=0

=> 3x(x-4)+5.(x-4)=0

=> (x-4)(3x+5)=0

=> \(\left[{}\begin{matrix}x-4=0\\3x+5=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=4\\x=-\dfrac{5}{3}\end{matrix}\right.\)

c)x3+2x2-x2-2x+2x+4=0

=> x2(x+2)-x(x+2)+2(x+2)=0

=>(x2-x+2)(x+2)=0

=> x=-2( vi x2-x+2>0)

d) x3-x2-4x2+4x+4x-4=0

=> x2(x-1)-4x(x-1)+4(x-1)=0

=>(x-1)(x2-4x+4)=0

=> \(\left[{}\begin{matrix}x-1=0\\x^2-4x+4=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

30 tháng 1 2018

2x2-5x+2=0

⇔2x2-x-4x+2=0

⇔x(2x-1)-2(2x-1)=0

⇔(x-2)(2x-1)=0

\(\left[{}\begin{matrix}x-2=0\\2x-1=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=2\\2x=1\Leftrightarrow x=\dfrac{1}{2}\end{matrix}\right.\)

sậy S=\(\left\{2;\dfrac{1}{2}\right\}\)

x3+x2+4=0

⇔x3+2x2-x2-2x+2x+4=0

⇔(x3+2x2)-(x2+2x)+(2x+4)=0

⇔x2(x+2)-x(x+2)+2(x+2)=0

⇔(x+2)(x2-x+2)=0

⇔x+2=0 và x2-x+2=0

⇔x=-2 và \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\)(vô lý)

vậy S={-2}

12 tháng 2 2017

\(\left(3x+1\right)\left(x-3\right)=\left(3x+1\right)\left(2x-5\right)\)

\(\Leftrightarrow\left(3x+1\right)\left(x-3\right)-\left(3x+1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x-3-2x+5\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(2-x\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}3x+1=0\\2-x=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[\begin{matrix}3x=-1\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=-\frac{1}{3}\\x=2\end{matrix}\right.\)

Vậy tập nghiệm của pt là \(S=\left\{-\frac{1}{3};2\right\}\)

12 tháng 2 2017

Có : \(\left(3x+1\right)\left(x-3\right)=\left(3x+1\right)\left(2x-5\right)\)

\(\Leftrightarrow\) \(\left(3x+1\right)\left(x-3\right)-\left(3x+1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\) \(\left(3x+1\right)\left(x-3-2x+5\right)=0\)

\(\Leftrightarrow\) \(\left(3x+1\right)\left(-x+2\right)=0\)

\(\Leftrightarrow\) \(\left[\begin{matrix}3x+1=0\\-x+2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[\begin{matrix}3x=-1\\-x=-2\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[\begin{matrix}x=\frac{-1}{3}\\x=2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{-1}{3};2\right\}\)

NV
13 tháng 11 2018

ĐKXĐ: \(x\ge1;x\le-3;x=-1\)

\(\sqrt{2\left(x+1\right)\left(x+3\right)}-\sqrt{\left(x-1\right)\left(x+1\right)}=2\left(x+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=0\left(1\right)\\\sqrt{2\left(x+3\right)}-\sqrt{x-1}=2\sqrt{x+1}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x+1=0\Rightarrow x=-1\)

\(\left(2\right)\Leftrightarrow\sqrt{2x+6}=\sqrt{x-1}+2\sqrt{x+1}\)

\(\Leftrightarrow2x+6=x-1+4\sqrt{\left(x-1\right)\left(x+1\right)}+4x+4\)

\(\Leftrightarrow4\sqrt{x^2-1}=3-3x\) \(\Leftrightarrow\left\{{}\begin{matrix}3-3x\ge0\\16\left(x^2-1\right)=\left(3-3x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\7x^2+18x-25=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-25}{7}\end{matrix}\right.\)

Vậy pt có 3 nghiệm: \(x=-1;1;\dfrac{-25}{7}\)

14 tháng 11 2018

thank

9 tháng 11 2017

\(x^4-x^2+2x+2=y^2\)

Ta có: 

\(\left(x^2-1\right)^2\le x^4-x^2+2x+2< \left(x^2+2\right)^2\)

\(\Rightarrow x^4-x^2+2x+2=\left(\left(x^2-1\right)^2;x^4;\left(x^2-1\right)^2\right)\)

Tới đây tự làm nốt nhé