Tìm hai số nguyên tố x , y biết : 7x + y và xy +11 đều là số nguyên tố.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ra, ta có: \(p,q\ge2\) và \(7q+p;pq+11\ge2\)
Xét trường hợp 1: \(7p+q\) hoặc \(pq+11\) là chẵn
=> \(7p+q=2\) hoặc \(pq+11=2\)
=> \(7p=2-q< 2\)(mà \(p\ge2\) => loại) hoặc \(pq=2-11=-9< 0\)(loại)
Xét trường hợp 2: \(7p+q;pq+11\) đều là lẻ.
=> \(pq\) là chẵn => \(p\) hoặc \(q\) chẵn
*) Với \(p\) chẵn =>\(p=2\) => 2 số nguyên tố sẽ là: \(14+q\) và \(2q+11\)
+) Xét \(q=3k\Rightarrow k=1\)(do q là số nguyên tố) . Thỏa mãn đề bài => q=3
+) Xét \(q=3k+1\Rightarrow14+q=15+3q⋮3\) mà 14+q>3 => Loại
+) Xét \(q=3k+2\Rightarrow2q+11=6k+15⋮3\) mà 6k+15 >3=> Loại
*) Với \(q\) chẵn => \(q=2\) => 2 số nguyên tố sẽ là: \(7q+2;2p+11\)
+) Xét \(p=3k\Rightarrow k=1\)(Do p là số nguyên tố) => \(p=3\) và nó thỏa mãn đề bài.
+) Xét \(p=3k+1\Rightarrow7p+2=21k+9⋮3\) mà 21k+9>3=> Loại.
+) Xét \(p=3k+2\Rightarrow2p+11=6k+15⋮3\) mà 6k+15> 3 => Loại.
Vậy các cặp số thỏa mãn là \(\left(p;q\right)=\left(2;3\right);\left(3;2\right)\)
x = 2 ; y = 3