giúp mik vs ạ!!!
câu e, f, g thôi nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) \(y=4sinx-2cos2x-1\)
\(=4sinx-2\left(1-2sin^2x\right)-1\)
\(=4sin^2x+4sinx-3\)
Đặt \(t=sinx,t\in\left[-1;1\right]\)
\(y=f\left(t\right)=4t^2+4t-3\) \(\Leftrightarrow f'\left(t\right)=8t+4\)
\(f'\left(t\right)=0\Leftrightarrow t=-\dfrac{1}{2}\)
Vẽ BBT với \(t\in\left[-1;1\right]\) ta được
\(minf\left(t\right)=miny=-4\Leftrightarrow t=-\dfrac{1}{2}\)\(\Leftrightarrow sinx=-\dfrac{1}{2}\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\) ( k thuộc Z)
\(maxf\left(t\right)=miny=5\Leftrightarrow t=1\)\(\Leftrightarrow sinx=1\) \(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\) ( k thuộc Z)
Vậy...
e) \(y=3sin2x+8cos^2x-1\)
\(=3sin2x+4\left(2cos^2x-1\right)+3\)
\(=3sin2x+4cos2x+3\)
\(=5\left(\dfrac{3}{5}sin2x+\dfrac{4}{5}cos2x\right)+3\)
Đặt \(cosu=\dfrac{3}{5}\Leftrightarrow sinu=\dfrac{4}{5}\)
\(y=5\left(sin2x.cosu+cos2x.sinu\right)+3=5.sin\left(2x+u\right)+3\)
Có \(-1\le sin\left(2x+u\right)\le1\) \(\Leftrightarrow-2\le y\le8\)
\(maxy=8\Leftrightarrow sin\left(2x+u\right)=1\) \(\Leftrightarrow2x+u=\dfrac{\pi}{2}+k2\pi\) \(\Leftrightarrow x=-\dfrac{u}{2}+\dfrac{\pi}{4}+k\pi\)\(\Leftrightarrow x=-\dfrac{1}{2}.arccos\dfrac{3}{5}+\dfrac{\pi}{4}+k\pi\) ( k thuộc Z)
\(miny=-2\Leftrightarrow sin\left(2x+u\right)=-1\)\(\Leftrightarrow x=-\dfrac{1}{2}.\dfrac{arccos3}{5}-\dfrac{\pi}{4}+k\pi\) ( k thuộc Z)
Vậy...
a: \(\left(x-1.2\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1.2=2\\x-1.2=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3.2\\x=-0.8\end{matrix}\right.\)
b: Ta có: \(\left(x+1\right)^3=-125\)
\(\Leftrightarrow x+1=-5\)
hay x=-6
\(21,\\ e,PT\Leftrightarrow\left|2x-5\right|=5-2x\Leftrightarrow\left[{}\begin{matrix}2x-5=5-2x\left(x\ge\dfrac{5}{2}\right)\\5-2x=5-2x\left(x< \dfrac{5}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(tm\right)\\0x=0\left(tm\right)\end{matrix}\right.\\ \Leftrightarrow x\in R\\ f,\Leftrightarrow\left|x-\dfrac{1}{4}\right|=\dfrac{1}{4}-x\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{4}=\dfrac{1}{4}-x\left(x\ge\dfrac{1}{4}\right)\\\dfrac{1}{4}-x=\dfrac{1}{4}-x\left(x< \dfrac{1}{4}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\left(tm\right)\\0x=0\left(tm\right)\end{matrix}\right.\\ \Leftrightarrow x\in R\)
Đây ạ :
Bài thơ thể hiện sâu sắc tình cảnh đáng thương của ông đồ đúng không?
2 câu tiếp theo :
Em nghe em về quê hương ngay
Em đã sáng tác hết đây này
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAKC vuông tại K có KF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot AC=AK^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có KA là đường cao ứng với cạnh huyền BC, ta được:
\(KB\cdot KC=AK^2\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(AF\cdot AC=KB\cdot KC\)
b: Xét tứ giác AEKF có
\(\widehat{FAE}=\widehat{AFK}=\widehat{AEK}=90^0\)
Do đó: AEKF là hình chữ nhật
Suy ra: \(AK=EF\left(3\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAKB vuông tại K có KE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot AB=AK^2\left(4\right)\)
Từ \(\left(3\right),\left(4\right)\) suy ra \(EF^2=AE\cdot AB\)
c: Ta có: \(AE\cdot AB+AF\cdot AC+KB\cdot KC\)
\(=AH^2+AH^2+AH^2\)
\(=3\cdot EF^2\)
\(e,\left(x-2\right)^2-16=0\\ \Leftrightarrow\left(x-6\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\\ f,x^2-5x-14=0\\ \Leftrightarrow\left(x-7\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ g,8x\left(x-3\right)+x-3=0\\ \Leftrightarrow\left(8x+1\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{8}\\x=3\end{matrix}\right.\)
e)\(\left(x-2-4\right)\left(x-2+4\right)=\left(x-6\right)\left(x+2\right)\)
f)\(x^2-5x-14=x^2-2.\dfrac{5}{2}x+\dfrac{25}{2}+\dfrac{3}{2}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{2}\)