CMr \(\dfrac{40^2+51^2+91^2}{79^2}=\dfrac{40^4+51^4+91^4}{79^4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a : B-A= 10012 +10022 +10042 +10072 -10002-10032-10052-10062
=(10012-10002)+(10022-10032) (10042-10052)+(10072-10062)
HĐT số 3= (1001-1000)*(1001+1000)+(1002-1003)*(1002+1003)+(1004-1005)*(1004+1005)+(1007-1006)*(1007+1006)
=2001 -2005-2009+2013=0
vậy A=B
Vế thứ nhất lớn hơn hoặc bằng chứ.Thay a,b,c vào rồi cm bất đẳng thức là xong
\(\dfrac{51}{53}+\dfrac{55}{57}+\dfrac{61}{63}+\dfrac{69}{71}+\dfrac{79}{81}+\dfrac{91}{93}\)
\(=\left(\dfrac{52}{53}-\dfrac{1}{53}\right)+\left(\dfrac{56}{57}-\dfrac{1}{57}\right)+\left(\dfrac{62}{63}-\dfrac{1}{63}\right)+\left(\dfrac{70}{71}-\dfrac{1}{71}\right)+\left(\dfrac{80}{81}-\dfrac{1}{81}\right)+\left(\dfrac{92}{93}-\dfrac{1}{93}\right)\)
\(=\left(1-\dfrac{1}{53}-\dfrac{1}{53}\right)+\left(1-\dfrac{1}{57}-\dfrac{1}{57}\right)+\left(1-\dfrac{1}{63}-\dfrac{1}{63}\right)+\left(1-\dfrac{1}{71}-\dfrac{1}{71}\right)+\left(1-\dfrac{1}{81}-\dfrac{1}{81}\right)+\left(1-\dfrac{1}{93}-\dfrac{1}{93}\right)\)
\(=\left(1-0\right)+\left(1-0\right)+\left(1-0\right)+\left(1-0\right)+\left(1-0\right)+\left(1-0\right)\)
\(=1+1+1+1+1+1\)
\(=6\)
a,=\(\dfrac{\left(2-\dfrac{1}{3}+\dfrac{1}{4}\right).12}{\left(2+\dfrac{1}{6}-\dfrac{1}{4}\right).12}\)+\(\dfrac{\left(\dfrac{3}{5}-\dfrac{1}{4}+\dfrac{1}{2}\right).20}{\left(\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{2}{5}\right).20}\)
=\(\dfrac{24-4+3}{24+2-3}\) +\(\dfrac{12-5+10}{10+15-8}\)(nhân từng số hạng với 12;20)
=\(\dfrac{23}{23}\)+\(\dfrac{17}{17}\) =1+1=2
b,=\(\dfrac{5.\left(\dfrac{1}{79}\right)+5.\left(\dfrac{1}{83}\right)+\dfrac{1}{17}}{17.\left(\dfrac{1}{79}\right)+17.\left(\dfrac{1}{83}\right)+\dfrac{1}{5}}\)=\(\dfrac{5.\left(\dfrac{1}{79}+\dfrac{1}{83}\right)+\dfrac{1}{17}}{17.\left(\dfrac{1}{79}+\dfrac{1}{83}\right)+\dfrac{1}{5}}\)