Cho đoạn thẳng AB=13cm, trên đó lấy điểm C thuộc AB sao cho ac=9cm. Trên tia Cx vuông góc AB lấy điểm D sao cho CD=6cm. Vẽ đường tròn tâm O, đường kính AB
a) CRM: D thuộc (O) đường kính AB
b) so sánh 2 cung nhỏ BD và AD
c) gọi E là trung điểm AB, P là trung điểm BD. Tia OE cắt (O) tại Q, OP cắt (O) tại M. Tính số đo cung MQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDAB có
DC là đường cao
\(DC^2=AC\cdot CB\)
Do đó: ΔDAB vuông tại D
=>D nằm trên đường tròn đường kính AB
b: Xét ΔDAB vuông tại D có DC là đường cao
nên \(\left\{{}\begin{matrix}DA^2=AC\cdot AB\\DB^2=BC\cdot BA\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DA=3\sqrt{13}\left(cm\right)\\DB=2\sqrt{13}\left(cm\right)\end{matrix}\right.\)
Vì DA<DB nên \(\stackrel\frown{DA}< \stackrel\frown{DB}\)
a: Ta có: \(\widehat{CHB}=90^0\)
=>ΔCHB vuông tại H
=>ΔCHB nội tiếp đường tròn đường kính CB(4)
Ta có: \(\widehat{CKB}=90^0\)
=>ΔCKB vuông tại K
=>ΔCKB nội tiếp đường tròn đường kính CB(5)
Từ (4) và (5) suy ra C,H,B,K cùng thuộc đường tròn đường kính CB
b:
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Ta có: \(\widehat{OCB}+\widehat{BCK}=\widehat{OCK}=90^0\)
\(\widehat{OCB}+\widehat{OCA}=\widehat{BCA}=90^0\)
Do đó: \(\widehat{BCK}=\widehat{OCA}\)(1)
Ta có: CHBK là tứ giác nội tiếp
=>\(\widehat{BCK}=\widehat{BHK}\left(2\right)\)
Xét ΔOAC có OC=OA
nên ΔOAC cân tại O
=>\(\widehat{OAC}=\widehat{OCA}\)(3)
Từ (1),(2),(3) suy ra \(\widehat{BHK}=\widehat{OAC}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên HK//AC
Xét tứ giác CHBK có
\(\widehat{CHB}+\widehat{CKB}=90^0+90^0=180^0\)
=>CHBK là tứ giác nội tiếp
=>C,H,B,K cùng thuộc một đường tròn
xet tg BCDE ta co;
góc acb = 90 ( goc noi tiep chan nua dg tron)
goc DEB =90(gt)
vay tg BCDE noi tiep( t/c cua tg noi tiep)
a.Ta có là đường kính của
Mà
nội tiếp đường tròn đường kính
b.Ta có nội tiếp
là phân giác
c.Vì là đường kính của
Xét có
Mà là trực tâm
Mà thẳng hàng
Xét có:
Chung