K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BHCK có

M là trung điểm của đường chéo BC

M là trung điểm của đường chéo HK

Do đó: BHCK là hình bình hành

b: Ta có: BHCK là hình bình hành

nên BH//CK

mà BH\(\perp\)AC

nên CK\(\perp\)AC
hay ΔCAK vuông tại C

12 tháng 12 2020

Vẽ hình không chuẩn => không chắc câu a lắm nha!undefined

17 tháng 12 2020

a) Có M là td BC

MH = MK ( K đối xứng H qua M)

Suy ra M là td mỗi đg

suy ra BHCK là hbh

Vậy...

b) có ch là đường cao tam giác ABC ( H là trực tâm)

 suy ra CH vuông góc AB

 có bhck là hình bình hành

 => DK song song với CH

Suy ra DK vuông góc AB

Vậy góc ABK  bằng 90 độ

C) BHCK là hình thoi

Khi và chỉ khi BH = CH

Khi và chỉ khi H là trọng tâm của tam giác ABC

Khi và chỉ khi tam giác ABC đều

Vận tam giác ABC đều thì tứ giác BHCK là hình thoi

 

Biết bạn đề bài này lâu rồi nhưng mà mình cứ giải Xem cách của mình với các của bạn cách nào tiện hơn hihi

 

Hiểu rõ về BTS chỉ có thể là Army phải không chị Bangtan?Chỉ cần nhìn avatar đoán ra chủ nick là con gái vì số fan girl nhiều hơn fan boy.

a: Xét ΔABC có M,N lần lượt là trung điểm của AB,AC
=>MN là đường trung bình của ΔABC

=>MN//BC và \(MN=\dfrac{1}{2}BC\)

=>BC=2MN

b: ta có: MN//BC

K\(\in\)MN

Do đó: MK//BC

Ta có: BC=2MN

mà MK=2MN(N là trung điểm của MK)

nên BC=MK

Xét tứ giác BMKC có 

KM//BC

KM=BC

Do đó: BMKC là hình bình hành

c: Xét tứ giác AKCM có

N là trung điểm chung của AC và KM

=>AKCM là hình bình hành

d: Để hình bình hành AKCM trở thành hình chữ nhật thì \(\widehat{AMC}=90^0\)

=>CM\(\perp\)AM tại M

=>CM\(\perp\)AB tại M

Xét ΔCAB có

CM là đường cao

CM là đường trung tuyến

Do đó: ΔCAB cân tại C

=>CA=CB

25 tháng 12 2021

\(a,\) M,E là trung điểm BC,AB nên ME là đtb \(\Delta ABC\)

Do đó \(ME//AC\Rightarrow ME\bot AB(AC\bot AB)\)

\(b,\) Vì E là trung điểm MH và AB nên AMBH là hbh

Mà \(MH\bot AB\) tại E nên AMBH là hình thoi

\(c,\) Để \(AMBH\) là hv thì \(\widehat{AMB}=90^0\Leftrightarrow AM\bot BC\)

Mà AM là trung tuyến ứng cạnh huyền

Vậy để \(AMBH\) là hv thì \(\Delta ABC\) vuông cân tại A

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Qtheo thứ tự là trung điểm của AD, AF, EF, ED.a) Tứ giác MNPQ là hình gì? Vì sao?7b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M quaAB, E là giao điểm của MH và AB....
Đọc tiếp

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q
theo thứ tự là trung điểm của AD, AF, EF, ED.
a) Tứ giác MNPQ là hình gì? Vì sao?

7

b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?
c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?
Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua
AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK
và AC.
a) Xác định dạng của các tứ giác AEMF, AMBH, AMCK.
b) Chứng minh rằng H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Bài 5: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua trung điểm
M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

1

https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem

Bạn xem tại link này nhé

Học tốt!!!!!!