K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2017

Ta có : a + 5b \(⋮\) 7

=> 10a + 50 b \(⋮\) 7

10a + b + 49b \(⋮\) 7

Mà 49b \(⋮\) 7 ( vì 49 \(⋮\) 7 )

=> 10a + b \(⋮\) 7

28 tháng 10 2021

\(a+5b⋮7\Rightarrow10\left(a+5b\right)=10a+50b⋮7\)

\(10a+50b=\left(10a+b\right)+49b⋮7\)

\(49b⋮7\Rightarrow10a+b⋮7\left(dpcm\right)\)

a+5b chia hết cho 7 

=> 10a+50b chia hết cho 7 

=> 10a+b+49b chia hết cho 7

Mà 49b chia hết cho 7 

=> 10a+b chia hết cho 7

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

17 tháng 12 2016

Giả sử (10a + b)⋮7 (1)

Vì (a + 5b)⋮7 nên 4(a + 5b)⋮7

=> (4a + 20b)⋮7 (2)

Từ (1) và (2) => (10a + b) + (4a + 20b)⋮7

=> (10a + b + 4a + 20b)⋮7

=> (10a + 4a) + (b + 20b)⋮7

=> (14a + 21b)⋮7

=> 7(2a + 3b)⋮7 (đúng)

=> Điều giả sử là đúng

Vậy (10a + b)⋮7 (đpcm)

 

17 tháng 12 2016

Theo đầu bài (a+5b) \(⋮\)7 (a, b \(\in\) N*)
=> a \(⋮\)7, 5b \(⋮\)7
Mà 5 \(⋮̸\) 7 nên b \(⋮\)7
Do a \(⋮\)7 nên 10a \(⋮\)7
=> 10a + b \(⋮\)7
Vậy 10a + b \(⋮\)7

21 tháng 12 2015

trong sách nâng cao và phát triển ý, cứ tìm sẽ ra

21 tháng 12 2015

ta có:

a+5b chia hết cho 7

=>10.(a+5b)=10a+50b chia hết cho 7

lại có: 49b chia hết cho 7

=>10a+50b-49b chia hết cho 7

=>10a+b chia hết cho 7 (đpcm)

13 tháng 9 2015

Xét hiệu 5(10a+b) - (a+5b) = (50a+5b) - (a+5b)

                                        =49a chia hết cho 7

suy ra:5(10a+b) - (a+5b) chia hết cho 7

mà a+5b chia hết cho 7 nên 10a+b chia hết cho 7

 

23 tháng 2 2015

Ta có: 

a+5b chia hết cho 7

=>10.(a+5b)chia hết cho 7

=>10a+50b chia hết cho 7

=>(10a+b)+49b chia hết cho 7(1)

Mà 49 chia hết cho 7 nên 49b chia hết cho 7(2)

Từ (1)và(2), ta có: 10a+b chia hết cho 7

Vậy nếu a,b\(\in\)N và a+5b chia hết cho 7 thì 10a+b cũng chia hết cho 7.

 

2 tháng 12 2017

a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^

31 tháng 12 2014

Ta có : a+5b chia hết cho 7

=>10(a+5b) chia hết cho 7

=>10a+50b chia hết cho 7

=>10a+b+49b chia hết cho 7

=>(10a+b+49b)-49b chia hết cho 7(vì số chia hết cho 7-một số chia hết cho 7=1 số chia hết cho 7)

=>10a+b chia hết cho 7

31 tháng 12 2014

ta có : a+5b chia hết cho 7

=>10(a+5b) chia hết cho 7

=>10a+50b chia hết cho 7

=>10a+b+49b chia hết cho 7

=>(10a+b+49b)-49b chia hết cho 7(vì số chia hết cho 7-một số chia hết cho 7=1 số chia hết cho 7)

=>10a+b chia hết cho 7

29 tháng 11 2016

Bài làm:

Đặt A =m5(10a + b) - (a + 5b)

= 50a + 5b - a - 5b

= 49a

Do 49 chia hết cho 7

=> A chia hết cho 7 nên:

Nếu a + 5b chia hết cho 7 => 5(10a + b) chia hết cho 7, (5, 7) = 1 => 10a + b chia hết cho 7 (1)

Nếu 10 + b chia hết cho 7 => 5(10a + b) chia hết cho 7 => a + 5b chia hết cho 7 (2)

Từ (1) và (2) ta được quyền suy ra: Nếu a + 5b chia hết cho 7 thì 10a + b chia hết cho 7, mệnh đề này đảo lại cũng đúng.

29 tháng 11 2016

ta có

(a+5b) chia hết cho 7

-> 10 (a+5b) chia hết cho 7

-> 10a+50b chia hết cho 7

-> 10a+b+49b chia hết cho 7

-> 10a+b chia hết cho 7 vì 49b chia hết cho7

ta có

10a+b chia hết cho7

->10 a +50b-49b chia hết cho7

->10(a+5b) -49b chia hết cho 7

-> 10(a+5b) chia hết cho 7

vậy mệnh de dao nguoc k dung