cho a,b,c >0 và a+b+c=1 . Hãy chứng minh \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Áp dụng BĐT cô si cho 3 số không âm ta có:
\(\frac{4a+1+1}{2}\ge\sqrt{4a+1}\Leftrightarrow\frac{4a+2}{2}\ge\sqrt{4a+1}\Leftrightarrow2a+1\ge\sqrt{4a+1}\)
Mà a>0 nên: \(2a+1>\sqrt{4a+1}\)
Tương tự với \(\sqrt{4b+1}\) và \(\sqrt{4c+1}\) ta có:
\(2b+1>\sqrt{4b+1};2c+1>\sqrt{4c+1}\)
=>\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}