Cho a+4b chia hết cho 13(a;b là số tự nhiên
Chứng minh rằng 10a+b chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:\(\hept{\begin{cases}2a+b⋮13\\5a-4b⋮13\end{cases}\Rightarrow\hept{\begin{cases}-2.\left(2a+b\right)⋮13\\5a-4b⋮13\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}-4a-2b⋮13\\5a-4b⋮13\end{cases}}\Rightarrow-4a-2b+5a-4b=a-6b\)
a, Ta có: \(2a+b⋮13\Rightarrow2.\left(2a+b\right)⋮13\Rightarrow4a+2b⋮13\)
Mà \(5a-4b⋮13\) \(\Rightarrow\left(5a-4b\right)-\left(4a+2b\right)⋮13\Rightarrow5a-4b-4a-2b⋮13\)
\(\Rightarrow a-6b⋮13\) (đpcm)
Vậy...
b, Ta có: \(98⋮7\Rightarrow98a⋮7\). Mà \(100a+b⋮7\Rightarrow\left(100a+b\right)-98a⋮7\Rightarrow100a+b-98a⋮7\)
\(\Rightarrow2a+b⋮7\Rightarrow4.\left(2a+b\right)⋮7\Rightarrow8a+4b⋮7\)
Mặt khác \(7a⋮7\Rightarrow8a+4b-7a⋮7\Rightarrow a+4b⋮7\) (đpcm)
Vậy...
b, Ta có: \(3a+4b⋮11\Rightarrow4.\left(3a+4b\right)⋮11\Rightarrow12a+16b⋮11\)
Mà \(11\left(a+b\right)⋮11\Rightarrow11a+11b⋮11\)
\(\Rightarrow\left(12a+16b\right)-\left(11a+11b\right)⋮11\Rightarrow12a+16b-11a-11b⋮11\)
\(\Rightarrow a+5b⋮11\) (đpcm)
Vậy...
Ta có: \(3a+4b⋮11\Rightarrow4.\left(3a+4b\right)⋮11\Rightarrow12a+16b⋮11\)
\(\Rightarrow\left(a+5b\right)+\left(11a+11b\right)⋮11\)
\(\Rightarrow\left(a+5b\right)+11.\left(a+b\right)⋮11\)
\(\Rightarrow a+5b⋮11\)
Lời giải:
$a+4b\vdots 13$
$\Leftrightarrow a+4b+39a\vdots 13$
$\Leftrightarrow 40a+4b\vdots 13$
$\Leftrightarrow 4(10a+b)\vdots 13$
Mà $4, 13$ nguyên tố cùng nhau nên $10a+b\vdots 13$ (đpcm)
Ta có: a+4b chia hết cho 13
=>23.(a+4b) chia hết cho 13
=>23a+92b chia hết cho 13
=>23a+92b-13a-13.7b chia hết cho 13
=>(23a-13a)+(92b-91b) chia hết cho 13
=>10a+1 chia hết cho 13
=>ĐPCM
ta có \(a+4b⋮13\Leftrightarrow10a+40b⋮13\)
xét 10a+b=10a+40b-39b
mà \(10a+40b⋮13va-39b⋮13\)
\(\Rightarrow10a+b⋮13\)
ta co :
(a+4b)\(⋮\) 13\(\Rightarrow16\left(a+4b\right)⋮13\Leftrightarrow\left(16a+64b\right)⋮13\)
Xet:
10a+b+16a+64b=26a+65b=13(2a+5b)\(⋮\) 13
\(\Rightarrow\left(10a+b+16a+64b\right)⋮13\)
ma 16a+64b\(⋮\) 13\(\Rightarrow10a+b⋮13\) (DPCM)