K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
2 tháng 9 2021

ta có \(x\in\left[-\frac{\pi}{4};0\right]\Rightarrow2x\in\left[-\frac{\pi}{2},0\right]\Rightarrow sin2x\in\left[-1,0\right]\)

Vậy \(\hept{\begin{cases}GTNN=-1\\GTLN=0\end{cases}}\)

`@` `\text {Ans}`

`\downarrow`

`a)`

\(\left(\dfrac{x}{2}-1\right)^3+2=-\dfrac{11}{8}\) phải k bạn nhỉ? `11/8` k có bậc lũy thừa nào `=5` á.

`=>`\(\left(\dfrac{x}{2}-1\right)^3=-\dfrac{11}{8}-2\)

`=>`\(\left(\dfrac{x}{2}-1\right)^3=-\dfrac{27}{8}\)

`=>`\(\left(\dfrac{x}{2}-1\right)^3=\left(-\dfrac{3}{2}\right)^3\)

`=>`\(\dfrac{x}{2}-1=-\dfrac{3}{2}\)

`=>`\(\dfrac{x}{2}=-\dfrac{3}{2}+1\)

`=>`\(\dfrac{x}{2}=-\dfrac{1}{2}\)

`=> x=1`

Vậy, `x=1`

`b)`

\(\left(\dfrac{x}{3}+\dfrac{1}{2}\right)\left(75\%-1\dfrac{1}{2}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{3}+\dfrac{1}{2}=0\\0,75-1\dfrac{1}{2}x=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}\dfrac{x}{3}=-\dfrac{1}{2}\\-\dfrac{3}{2}x=\dfrac{75}{100}\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}2x=-3\\-3x\cdot100=2\cdot75\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=-\dfrac{3}{2}\\-3x\cdot100=150\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=-\dfrac{3}{2}\\-3x=1,5\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy, `x={-3/2; -1/2}.`

19 tháng 12 2016

a) = \(x^2-6x+11\)

\(x^2-2.3x+3^2+2\)

\(\left(x-3\right)^2+2\ge2\left(do\left(x-3\right)^2\ge0\right)\)

Vậy min = 2 khi x-3=0<=> x=3

b) = \(-\left(x^2-6x+11\right)\)

\(-\left(x^2-2.x.3+3^2\right)-2\)

\(-2-\left(x-3\right)^2\le-2\left(do\left(x-3\right)^2\ge0\right)\)

Vậy max=-2 khi x-3 =0 <=> x=3

Chắc chắn đúng. mik nhé! Tks banj~~~ (:

19 tháng 12 2016

Dạng bài này phải là dễ, à k phải nói là quá dễ. Do tối rồi nên mình chỉ có thể giải giúp bạn bài tập thôi, còn muốn mình giảng thì nhắn tin riêng cho mình nhé!  :")

A = x^2  -  6x  +  11  =  (x^2  -  6x  +  9 ) + 2 = (x-3)^2  +  2

Vì (x-3)^2  >/= 0 với mọi x nên A=(x-3)^2 +2 >/= 2

Suy ra GTNN của A bằng 2 khi : x - 3 =0 hay x=3

3 tháng 9 2021

a) \(A=\sqrt{1-x}+\sqrt{1+x}\)

\(\Rightarrow A^2=1-x+1+x+2\sqrt{\left(1-x\right)\left(1+x\right)}=2+2\sqrt{1-x^2}\)

Do \(-x^2\le0\Rightarrow1-x^2\le1\Rightarrow A^2=2+2\sqrt{1-x^2}\le2+2=4\)

\(\Rightarrow A\le2\)

 

\(maxA=2\Leftrightarrow x=0\)

Áp dụng bất đẳng thức: \(\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\)(với \(x,y\ge0\))

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2\ge x+y\)

\(\Leftrightarrow x+y+2\sqrt{xy}\ge x+y\Leftrightarrow2\sqrt{xy}\ge0\left(đúng\right)\)

\(A=\sqrt{1-x}+\sqrt{1+x}\ge\sqrt{1-x+1+x}=\sqrt{2}\)

\(maxA=\sqrt{2}\Leftrightarrow\)\(\left[{}\begin{matrix}1-x=0\\1+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

 

3 tháng 9 2021

Cho mình sửa dòng cuối là \(minA=\sqrt{2}\) nhé

NV
23 tháng 4 2022

ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)

\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)

\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)

\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)

\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)

\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)

24 tháng 4 2022

-Em cảm ơn thầy nhiều ạ!