Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì | x -3 | > hoặc = 0
Suy ra : |x-3|+50 >hoặc =50
Vì A nhỏ nhất suy ra | x-3 | +50 =50
Suy ra x-3 =0
Suy ra x=3
Vậy GTNN của A = 50 khi x=3
115.
+) 312312 là một hợp số
Ta thấy 312 là 1 số chẵn nên 312 ít nhất là chia hết cho số 2, tưc là 312 có ước là 2 khác với 1 và 312. Nên 312 là một hợp số.
+) 213213 là một hợp số.
giải thích: tổng các chữ số của 213213 là 2+1+3=62+1+3=6 chia hết cho 33 nên 213213 ⋮⋮ 33, nghĩa là 213213 có ước là 33, khác 11 và 213213 do đó nó là hợp số .
+) 435435 là một hợp số
giải thích: 435435 có chữ số tận cùng là 55 nên 435435 ⋮⋮ 55 nghĩa là 435435 có ước là 55 khác 11 và 435435 do đó nó là hợp số.
+) 417417 là một hợp số.
giải thích: 417417 có tổng các chữ số là 4+1+7=124+1+7=12 chia hết cho 33 nên 417417 ⋮⋮ 33, nghĩa là 417417 có ước là 33, khác 11 và 417417 do đó nó là hợp số.
+) 33113311 là một hợp số.
giải thích: 3311=11.3013311=11.301 nên 33113311 có ước là 1111 và 301301. Vậy 33113311 là một hợp số.
+) 6767 là một số nguyên tố vì nó chỉ có hai ước là 11 và 6767.
116.
83∈P83∈P, (vì 8383 chỉ có hai ước là 11 và chính nó)
9191 ∉∉ PP, (vì 9191 có các ước 1,7,13,911,7,13,91 do đó nó không phải số nguyên tố)
15∈N15∈N,
P⊂NP⊂N. (dựa vào định nghĩa số nguyên tố là số tự nhiên chỉ có hai ước là 11 và chính nó).
120.
5∗5∗¯
∗∈{0,1,2,3,4,5,6,7,8,9}∗∈{0,1,2,3,4,5,6,7,8,9}
Do đó ta xét ∗∗ với từng giá trị
+) Nếu ∗∈{0,2,4,6,8}∗∈{0,2,4,6,8} thì ¯¯¯¯¯¯5∗5∗¯ chia hết cho 22 do đó các trương hợp này không thỏa mãn.
+) Nếu ∗=5∗=5 thì 5555 chia hết cho 55 nên trường hợp này không thỏa mãn.
+) Nếu ∗=1∗=1 thì 5151 có tổng các chữ số là 5+1=65+1=6 chia hết cho 33 do đó 5151 chia hết cho 33, trường hợp này loại
+) Nếu ∗=3∗=3 thì 5353 là số nguyên tố
+) Nếu ∗=7∗=7 thì 5757 có tổng các chữ số là 5+7=125+7=12 chia hết cho 33 do đó 5757 chia hết cho 33, trường hợp này loại.
+) Nếu ∗=9∗=9 thì 5959 là số nguyên tố.
Vậy * = {3; 9}
¯¯¯¯¯¯9∗9∗¯
Tương tự ta xét như trên và tìm được số 9797 là số nguyên tố.
+) Nếu ∗∈{0,2,4,6,8}∗∈{0,2,4,6,8} thì ¯¯¯¯¯¯9∗9∗¯ chia hết cho 22 do đó các trương hợp này không thỏa mãn.
+) Nếu ∗=5∗=5 thì 9595 chia hết cho 55 nên trường hợp này không thỏa mãn.
+) Nếu ∗=1∗=1 thì 9191 chia hết cho 77 do đó trường hợp này loại.
+) Nếu ∗=3∗=3 thì 9393 có tổng các chữ số là 9+3=129+3=12 nên chia hết cho 3 do đó 9393 là hợp số, do đó trường hợp này loại.
+) Nếu ∗=7∗=7 thì 9797 là một số nguyên tố.
+) Nếu ∗=9∗=9 thì 9999 là một hợp số vì cỏ tổng các chữ số là: 9+9=189+9=18 chia hết cho 33 và 99. Do đó trường hợp này loại.
Vậy * = 7
122.
a) Đúng, vì có 22 và 33 là hai số tự nhiên liên tiếp đều là số nguyên tố;
b) Đúng, đó là 3,5,73,5,7;
c) Sai, vì 22 là số chẵn đồng thời cũng là số nguyên tố;
d) Sai vì 22 cũng là số nguyên tố.
Bài 115
312312 là một hợp số
Ta thấy 312 là 1 số chẵn nên 312 ít nhất là chia hết cho số 2, tưc là 312 có ước là 2 khác với 1 và 312. Nên 312 là một hợp số.
+) 213213 là một hợp số.
giải thích: tổng các chữ số của 213213 là 2+1+3=62+1+3=6 chia hết cho 33 nên 213213 ⋮⋮ 33, nghĩa là 213213 có ước là 33, khác 11 và 213213 do đó nó là hợp số .
+) 435435 là một hợp số
giải thích: 435435 có chữ số tận cùng là 55 nên 435435 ⋮⋮ 55 nghĩa là 435435 có ước là 55 khác 11 và 435435 do đó nó là hợp số.
+) 417417 là một hợp số.
giải thích: 417417 có tổng các chữ số là 4+1+7=124+1+7=12 chia hết cho 33 nên 417417 ⋮⋮ 33, nghĩa là 417417 có ước là 33, khác 11 và 417417 do đó nó là hợp số.
+) 33113311 là một hợp số.
giải thích: 3311=11.3013311=11.301 nên 33113311 có ước là 1111 và 301301. Vậy 33113311 là một hợp số.
+) 6767 là một số nguyên tố vì nó chỉ có hai ước là 11 và 6767.
Bài 116
83∈P83∈P, (vì 8383 chỉ có hai ước là 11 và chính nó)
9191 ∉∉ PP, (vì 9191 có các ước 1,7,13,911,7,13,91 do đó nó không phải số nguyên tố)
15∈N15∈N,
P⊂NP⊂N. (dựa vào định nghĩa số nguyên tố là số tự nhiên chỉ có hai ước là 11 và chính nó).
Bài 120
¯¯¯¯¯¯5∗5∗¯
∗∈{0,1,2,3,4,5,6,7,8,9}∗∈{0,1,2,3,4,5,6,7,8,9}
Do đó ta xét ∗∗ với từng giá trị
+) Nếu ∗∈{0,2,4,6,8}∗∈{0,2,4,6,8} thì ¯¯¯¯¯¯5∗5∗¯ chia hết cho 22 do đó các trương hợp này không thỏa mãn.
+) Nếu ∗=5∗=5 thì 5555 chia hết cho 55 nên trường hợp này không thỏa mãn.
+) Nếu ∗=1∗=1 thì 5151 có tổng các chữ số là 5+1=65+1=6 chia hết cho 33 do đó 5151 chia hết cho 33, trường hợp này loại
+) Nếu ∗=3∗=3 thì 5353 là số nguyên tố
+) Nếu ∗=7∗=7 thì 5757 có tổng các chữ số là 5+7=125+7=12 chia hết cho 33 do đó 5757 chia hết cho 33, trường hợp này loại.
+) Nếu ∗=9∗=9 thì 5959 là số nguyên tố.
Vậy * = {3; 9}
¯¯¯¯¯¯9∗9∗¯
Tương tự ta xét như trên và tìm được số 9797 là số nguyên tố.
+) Nếu ∗∈{0,2,4,6,8}∗∈{0,2,4,6,8} thì ¯¯¯¯¯¯9∗9∗¯ chia hết cho 22 do đó các trương hợp này không thỏa mãn.
+) Nếu ∗=5∗=5 thì 9595 chia hết cho 55 nên trường hợp này không thỏa mãn.
+) Nếu ∗=1∗=1 thì 9191 chia hết cho 77 do đó trường hợp này loại.
+) Nếu ∗=3∗=3 thì 9393 có tổng các chữ số là 9+3=129+3=12 nên chia hết cho 3 do đó 9393 là hợp số, do đó trường hợp này loại.
+) Nếu ∗=7∗=7 thì 9797 là một số nguyên tố.
+) Nếu ∗=9∗=9 thì 9999 là một hợp số vì cỏ tổng các chữ số là: 9+9=189+9=18 chia hết cho 33 và 99. Do đó trường hợp này loại.
Vậy * = 7
Bài 122
a) Đúng, vì có 22 và 33 là hai số tự nhiên liên tiếp đều là số nguyên tố;
b) Đúng, đó là 3,5,73,5,7;
c) Sai, vì 22 là số chẵn đồng thời cũng là số nguyên tố;
d) Sai vì 22 cũng là số nguyên tố.
k cho mk nha
A = 1 . 2 . 3 + 2 . 3 . 4 + ......... + 38 .39 . 40
\(\Rightarrow4A=1.2.3.4+2.3.4.4+......+38.39.40.4\)
\(\Rightarrow4A=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+.......+38.39.40.\left(41-37\right)\)
\(\Rightarrow4A=1.2.3.4+1.2.3.0+2.3.4.5-1.2.3.4+....+38.39.40.41-38.39.40.37\)
\(\Rightarrow4A=38.39.40.41\)
\(\Rightarrow A=\frac{38.39.40.41}{4}\)
\(\Rightarrow A=38.39.10.41\)
\(\Rightarrow A=607620\)
Vậy \(A=607620\)