K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

A B C A' B' C' H Ta có : \(\dfrac{HA'}{AA'}=\dfrac{S_{HBC}}{S_{ABC}}\)( Vì có chung đáy BC nên tỉ số hai đường cao cũng bằng tỉ số hai diện tích) ( * )

Tương tự , ta cũng có :

\(\dfrac{HB'}{BB'}=\dfrac{S_{HCA}}{S_{ABC}}\) (**)

\(\dfrac{HC'}{CC'}=\dfrac{S_{HAB}}{S_{ABC}}\) (***)

Từ : ( * ; ** ; ***) =>\(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}=\dfrac{S_{HAC}+S_{HAB}+S_{HBC}}{S_{ABC}}\)

\(=\dfrac{S_{ABC}}{S_{ABC}}=1\left(đpcm\right)\)


9 tháng 3 2017

kb vs mik ik 

a: góc ACB=90 độ-60 độ=30 độ<góc ABC

nên AB<AC

b: Xét ΔABC vuông tại A và ΔDBE vuông tại D có

BA=BD

góc ABC chung

Do đó: ΔABC=ΔDBE

c: XétΔBAH vuông tại A và ΔBDH vuông tại D có

BH chung

BA=BD

Do đó: ΔBAH=ΔBDH

Suy ra: góc ABH=góc DBH

hay BH là phân giác của góc ABC

8 tháng 2 2019

a, Ta có :tam giác ABD và tam giác ACE có
$\widehat{AEC}=\widehat{ADB}=90$
Góc A chung
=> $\bigtriangleup ABD\sim \bigtriangleup ACE$
b, Tương tự câu a ta CM được $\Delta HEB\sim \Delta HDC (g.g)$
=>$\frac{HE}{HD}= \frac{HB}{HC}\rightarrow HD.HB=HE.HC$

12 tháng 6 2018

Ôn tập chương Đường thẳng vuông góc. Đường thẳng song song

a,\(\widehat{C}=180^o-90^o-\widehat{B}=90^o-30^o=60^o\)

b, Xét \(\Delta ACD-vs-\Delta MCD\)

- AC = CM (gt)

- \(\widehat{ACD}=\widehat{MCD}\) (gt)

- CD chung (gt)

=> \(\Delta ACD=\Delta MCD\left(c-g-c\right)\)

c, Ta có:

AK // CD và CK // AD => AK = CD (t/c đoạn chắn)

d, \(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{ACK}=90^o\\\widehat{ACD}=\widehat{CAK}=\dfrac{1}{2}\widehat{C}=30^o\left(so-le-trong\right)\end{matrix}\right.\Rightarrow\widehat{ADC}=\widehat{AKC}=180^o-90^o-30^o=60^o\)