K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 12 2017

Lời giải:

Ta có:

\(2.16^x-(3+\sqrt{2})12^x+(1+\sqrt{2}).9^x=0\)

\(\Leftrightarrow 2\left(\frac{16}{9}\right)^x-(3+\sqrt{2})\left(\frac{12}{9}\right)^x+1+\sqrt{2}=0\)

\(\Leftrightarrow 2\left(\frac{4}{3}\right)^{2x}-(3+\sqrt{2})\left(\frac{4}{3}\right)^x+1+\sqrt{2}=0\)

Đặt \(\left(\frac{4}{3}\right)^x=t\Rightarrow 2t^2-(3+\sqrt{2})t+1+\sqrt{2}=0\)

\(\Rightarrow t=1\) hoặc \(t=\frac{1+\sqrt{2}}{2}\) (đều thỏa mãn)

Nếu \(t=1\Leftrightarrow \left(\frac{4}{3}\right)^x=1\Leftrightarrow x=0\)

Nếu \(t=\frac{1+\sqrt{2}}{2}\Leftrightarrow \left(\frac{4}{3}\right)^x=\frac{1+\sqrt{2}}{2}\)

\(\Leftrightarrow x= \log_{\frac{4}{3}}\frac{1+\sqrt{2}}{2}\)

23 tháng 12 2021

D

25 tháng 8 2023

a) \(\sqrt[]{x^2-4x+4}=x+3\)

\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)

\(\Leftrightarrow\left|x-2\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)

\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)

\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)

\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)

Giải pt (1)

\(\Delta=9+32=41>0\)

Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)

Giải pt (2)

\(\Delta=9+48=57>0\)

Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)

Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)

23 tháng 8 2023

a) \(6\sqrt{x-1}-\dfrac{1}{3}\cdot\sqrt{9x-9}+\dfrac{7}{2}\sqrt{4x-4}=24\) (ĐK: \(x\ge1\)

\(\Leftrightarrow6\sqrt{x-1}-\dfrac{1}{3}\cdot\sqrt{9\left(x-1\right)}+\dfrac{7}{2}\sqrt{4\left(x-1\right)}=24\)

\(\Leftrightarrow6\sqrt{x-1}-\dfrac{1}{3}\cdot3\sqrt{x-1}+\dfrac{7}{2}\cdot2\sqrt{x-1}=24\)

\(\Leftrightarrow6\sqrt{x-1}-\sqrt{x-1}+7\sqrt{x-1}=24\)

\(\Leftrightarrow12\sqrt{x-1}=24\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{24}{12}\)

\(\Leftrightarrow\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\)

\(\Leftrightarrow x=4+1\)

\(\Leftrightarrow x=5\left(tm\right)\)

b) \(\dfrac{1}{2}\sqrt{4x+8}-2\sqrt{x+2}-\dfrac{3}{7}\sqrt{49x+98}=-8\) (ĐK: \(x\ge-2\))

\(\Leftrightarrow\dfrac{1}{2}\cdot2\sqrt{x+2}-2\sqrt{x+2}-\dfrac{3}{7}\cdot7\sqrt{x+2}=-8\)

\(\Leftrightarrow\sqrt{x+2}-2\sqrt{x+2}-3\sqrt{x+2}=-8\)

\(\Leftrightarrow-4\sqrt{x+2}=-8\)

\(\Leftrightarrow\sqrt{x+2}=\dfrac{-8}{-4}\)

\(\Leftrightarrow\sqrt{x+2}=2\)

\(\Leftrightarrow x+2=4\)

\(\Leftrightarrow x=4-2\)

\(\Leftrightarrow x=2\left(tm\right)\)

28 tháng 1 2016

1) thay m=1 vào pt: \(x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

2) theo định lí viets, ta có: x1+x2=2(m+1)

                                          x1x2=2m

\(\sqrt{x_1}+\sqrt{x_2}=\sqrt{2}\Leftrightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=2\)

\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=2\)

\(\Leftrightarrow2\left(m+1\right)+2\sqrt{2m}=2\)

tới đây bạn làm tiếp nhé