rút gọn phân thức sau:
\(\dfrac{8a^{n+2}+a^{n-1}}{16a^{n+4}+4a^{n+2}+a^n}\)
nhanh nha giúp tui lẹ lên cần gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\dfrac{\left(n+1\right)!-n!}{\left(n+1\right)!+n!}=\dfrac{n!.\left(n+1\right)-n!}{n!\left(n+1\right)+n!}=\dfrac{n!\left(n+1-1\right)}{n!\left(n+1+1\right)}=\dfrac{n}{n+2}\)
a) \(\dfrac{8a^{n+2}+a^{n-1}}{16a^{n+4}+4a^{n+2}+a^n}=\dfrac{8a^{n-1+3}+a^{n-1}}{16a^{n-1+5}+4a^{n-1+3}+a^{n-1+1}}\)
\(=\dfrac{8a^{n-1}.a^3+a^{n-1}}{16a^{n-1}a^5+4a^{n-1}a^3+a^{n-1}a}=\dfrac{a^{n-1}\left(8a^3+1\right)}{a^{n-1}\left(16a^5+4a^3+a\right)}\)
\(=\dfrac{8a^3+1}{16a^5+4a^3+a}\)
a. Giả sử n+1 và 2n+3 chia hết cho d. Vậy 2n+2 chia hết cho d. Do đó 2n+3-(2n+2)=1 chia hết cho d. Vì vậy d lớn nhất bằng 1 nên n+1 và 2n+3 là 2 số nguyên tố cùng nhau. Kết luận phân số tối giản với mọi n là số tự nhiên khác 0. Câu b làm tương tự
a) \(A=\sqrt{9a}-\sqrt{16a}-\sqrt{49a}=3\sqrt{a}-4\sqrt{a}-7\sqrt{a}=-8\sqrt{a}\)
b) \(B=\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}}-\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\dfrac{\sqrt{3}\left(2+\sqrt{3}\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}}-\left(\sqrt{3}+\sqrt{2}\right)\)
\(=2+\sqrt{3}+\sqrt{2}+1-\sqrt{3}-\sqrt{2}=3\)
a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)
\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)
=-a-1
b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)
\(=\left|3a-5\right|-2a+4\)
\(=5-3a-2a+4\)
=9-5a
c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)
\(=4a-3-\left|2a-1\right|\)
\(=4a-3-2a+1\)
\(=2a-2\)
d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)
\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)
\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)
\(=-a^2\)
\(1,\)Rút gọn : \(\frac{-24}{56};\frac{1212}{-4545}\)
\(\frac{-24}{56}=\frac{-24:8}{56:8}=\frac{-3}{7}\)
\(\frac{1212}{-4545}=\frac{1212:(-101)}{(-4545):(-101)}=\frac{-12}{45}=\frac{-4}{15}\)
Tự so sánh