Tìm số dư cuối cùng của phép chia 2 đa thức:
\(\left(1+x^{1992}+x^{1993}+x^{1994}+x^{1995}\right):\left(1-x^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=x^{1992}.\left(x^2+x+1\right)-\left(x^{1992}-1\right)\)
\(x^{1992}.\left(x^2+x+1\right)⋮x^2+x+1\) Ta xét x^1992-1
Có \(x^{1992}-1=\left(x^3\right)^{664}-1^{664}⋮x^3-1=\left(x-1\right)\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\)
Vậy dư của phép chia trên là 0000000
\(x^3=x^3-1+1=\left(x-1\right)\left(x^2+x+1\right)+1\)
\(\Rightarrow x^3\equiv1\left(\text{mod }x^2+x+1\right)\)
\(\Rightarrow P\left(x^3\right)\equiv P\left(1\right)\left(\text{mod }x^2+x+1\right)\)
Và \(xQ\left(x^3\right)\equiv xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)
\(\Rightarrow P\left(x^3\right)+xQ\left(x^3\right)\equiv P\left(1\right)+xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\) với mọi x nguyên
\(\Rightarrow P\left(1\right)+x.Q\left(1\right)\) chia hết \(x^2+x+1\) với mọi x nguyên
Điều này xảy ra khi và chỉ khi \(P\left(1\right)=Q\left(1\right)=0\)
\(\Rightarrow P\left(x\right)\) có nghiệm \(x=1\) hay \(P\left(x\right)\) chia hết cho \(x-1\)
Cám ơn thầy Lâm ạ, ôi nhưng đây quả là bài toán khá hóc búa thầy ạ
x1994+x1993+1:x2+x+1
=(x1994+x1993:x2+x)+1
=x996+1
vậy dư là x996+1
chắc zậy
Vì đa thức chia có bậc 2 nên bậc của đa thức dư không vượt quá 1 .
Ta có :
\(\left(x^{54}+x^{45}+...+x^9+1\right)\)
\(=\left(x^2-1\right).Q+\left(ax+b\right)\)
Lần lượt ta có giá trị riêng là :
\(x=1;x=-1\)
\(\Rightarrow\hept{\begin{cases}7=a+b\\1=-a+b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=3\\b=4\end{cases}}\)
Vậy đa thức dư cần tìm là : \(3x+4\)
Do bậc của số chia là 2 nên số dư sẽ có dạng \(ax+b\)
Đặt \(x^{54}+x^{45}+...+x^9+1=\left(x^2-1\right).G\left(x\right)+ax+b\) với \(G\left(x\right)\) là đa thức thương
Thay \(x=1\) vào đẳng thức trên ta được : \(1+1+1...+1+1=a+b\Leftrightarrow a+b=7\) (1)
Thay \(x=-1\) vào đẳng thức trên ta được :\(1-1+1-1+...-1+1=-a+b\Leftrightarrow-a+b=1\)(2)
Cộng \(\left(1\right);\left(2\right)\) ta được \(2b=8\Rightarrow b=4\Rightarrow a=7-b=7-4=3\)
Vậy số dư của phép chia trên là \(3x+4\)
đang rảnh :v
Giải:
đa thức chia có bậc cao nhất là 2
=> số dư cuối cùng chỉ có thể có số hạng bậc cao nhất là 1 => sô dư có dạng: ax + b
Gọi thương của 2 đt đã cho là \(M\left(x\right)\)
Ta có: \(\left(1+x^{1992}+x^{1993}+x^{1994}+x^{1995}\right)=\left(1-x^2\right)\cdot M\left(x\right)+ax+b\)
Cho x = 1 => 5 = a + b
Cho x = -1 => 1 = -a + b
=> hpt: \(\left\{{}\begin{matrix}a+b=5\\-a+b=1\end{matrix}\right.\) giải hệ ta được \(\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)
=> số dư cuối cùng là: \(2x+3\)
cái bài dễ thế mà k biết lm à , gà thế '-'