1, so sánh
a/ 81^5 và 2^3.27^6
b/63^8 và129^7
c/5^3n và 3^5n (n thuộcN)
d/234^2.25^5 và32^3.49^5
e/202^303 và 303^202
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2711 và 818
Ta có :
2711 = ( 33 )11 = 333
818 = ( 34 )8 = 332
Vì 333 > 332 Nên 2711 > 818
a) Ta có:
\(2^{300}=2^{3\cdot100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2\cdot100}=\left(3^2\right)^{100}=9^{100}\)
Mà: \(8< 9\)
\(\Rightarrow8^{100}< 9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) Ta có:
\(3^{500}=3^{5\cdot100}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=7^{3\cdot100}=\left(7^3\right)^{100}=343^{100}\)
Mà: \(243< 343\)
\(\Rightarrow243^{100}< 343^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
c) Ta có:
\(8^5=\left(2^3\right)^5=2^{3\cdot5}=2^{15}=2\cdot2^{15}\)
\(3\cdot4^7=3\cdot\left(2^2\right)^7=3\cdot2^{2\cdot7}=3\cdot2^{14}\)
Mà: \(2< 3\)
\(\Rightarrow2\cdot2^{14}< 3\cdot2^{14}\)
\(\Rightarrow8^5< 3\cdot4^7\)
d) Ta có:
\(202^{303}=202^{3\cdot101}=\left(202^3\right)^{101}=8242408^{101}\)
\(303^{202}=303^{2\cdot101}=\left(303^2\right)^{101}=91809^{101}\)
Mà: \(8242408>91809\)
\(\Rightarrow8242408^{101}>91809^{101}\)
\(\Rightarrow202^{303}>303^{202}\)
Mỗi bài làm một nửa
bài 1: so sánh các lũy thừa
số trước =a số sau =b
a) 3^500 và 7^300
3^500=(3^5)^100=(27.9)^100
7^300=(7^3)^100=(49.7)^100
3^5<7^3
=>a<b
b) 8^5 và 3.4^7
8^5=2^3^5=2^15
3.4^7=3.2^14=2^15+2^14
a<b
bai 2: tìm chữ số tận cùng:
a)234^567
4^1=tận cùng =4
4^2=6
4^3=4
4^5=6
4^6=4
=>4^n tân cùng là 4 nếu n chẵn
=6 nếu n lẻ
567 lẻ=> đáp số =6.
a) \(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=\left(7^3\right)^{100}=343^{100}\)
\(243^{100}< 343^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
b) \(8^5=\left(2^3\right)^5=2^{15}\)
\(3.4^7=3.\left(2^2\right)^7=3.2^{14}>2.2^{15}=2^{15}\)
\(\Rightarrow8^5< 3.4^7\)
\(202^{303}=\left(101.2\right)^{303}=101^{303}.2^{303}\)
\(=101^{202}.101^{101}.8^{101}=101^{202}.808^{101}\)
Mà
\(303^{202}=\left(3.101\right)^{202}=101^{202}.3^{202}=101^{202}.9^{101}\)
Dễ thấy \(101^{202}.808^{101}>101^{202}.9^{101}\)
Do đó \(202^{303}>303^{202}\)
b: 99^20=(99^2)^10=9801^10
=>99^20<9999^10
d: 10^10=100^5=4*50^5<48*50^5
e: 1990^10+1990^9
=1990^9(1990+1)
=1990^9*1991
1991^10=1991^9*1991
=>1991^10>1990^9*1991
=>1991^10>1990^10+1990^9
\(a,\)Ta có :
\(9^5=\left(3^2\right)^5=3^{10}\)
\(27^3=\left(3^3\right)^3=3^{27}\)
Vì \(3^{10}>3^9\Rightarrow9^5>27^3\)
Ta có : 3500 = (35)100 = 243100
7300 = (73)100 = 343100
Vì 243 < 343
Nên : 243100 < 343100
Hay : 3500 < 7300
a) 815 và 23.276
Ta có :
815=(34)5=320=32.318=9.318
23.276=8.(33)6 = 8.318
Vì 9>8 => 9.318>8.313
=>815>23.276
b) 638 và 1297
Ta có:
638<648 ;648=(26)8=248
1297>1287 ; 1287=(27)7=249
Vì 248<249 => 648<1287
=>638<1297
c)53n và 35n
53n=(53)n=125n
35n=(35)n = 243n
Vì 125<243 =>125n< 243n
=>53n <35n