K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:

a. Vì $AC$ là tiếp tuyến của $(O)$ nên $AC\perp OA$ hay $AC\perp AB$

Do đó tam giác $ABC$ vuông tại $A$

$AB=2R=12$ (cm)

$AC= 5$ (cm)

Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+5^2}=13$ (cm)

b.

$\widehat{AMB}=90^0$ (góc nt chắn nửa đường tròn)

$\Rightarrow AM\perp MB$ hay $AM\perp BC$

Áp dụng hệ thức lượng trong tam giác vuông với tam giác vuông $ABC$, đường cao $AM$

$\frac{1}{AM^2}=\frac{1}{AC^2}+\frac{1}{AB^2}=\frac{1}{5^2}+\frac{1}{12^2}$

$\Rightarrow AM=\frac{60}{13}$ (cm)

Áp dụng định lý Pitago:

$MC=\sqrt{AC^2-AM^2}=\sqrt{5^2-(\frac{60}{13})^2}=\frac{25}{13}$ (cm)

$BM=BC-MC=13-\frac{25}{13}=\frac{144}{13}$ (cm)

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Hình vẽ:

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

7 tháng 11 2021

a, Vì \(\widehat{BAC}=90^0\) (góc nt chắn nửa đg tròn) nên tg ABC vuông tại A

7 tháng 11 2021

giải thích cách khác đc ko bn

Xét ΔOBA vuông tại A có \(cosBOA=\dfrac{OA}{OB}=\dfrac{1}{2}\)

nên \(\widehat{BOA}=60^0\)

Xét ΔOAC có OA=OC và \(\widehat{AOC}=60^0\)

nên ΔOAC đều

=>\(sđ\stackrel\frown{AC}\left(nhỏ\right)=60^0\)

Số đo cung AC lớn là: 

\(360-60=300^0\)