K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2021

a: Xét (O) có

MC là tiếp tuyến

MA là tiếp tuyến

Do đó: MC=MA

Xét (O) có

DC là tiếp tuyến

DB là tiếp tuyến

Do đó: DC=DB

Ta có: CM+DC=DM

nên MD=MA+BD

14 tháng 12 2020

a) Xét (O) có 

MA là tiếp tuyến có A là tiếp điểm(gt)

MC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: MA=MC(Tính chất hai tiếp tuyến cắt nhau)

Xét (O) có 

DC là tiếp tuyến có C là tiếp điểm(gt)

DB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: DC=DB(Tính chất hai tiếp tuyến cắt nhau)

Ta có: CM+CD=MD(C nằm giữa M và D)

mà MC=MA(cmt)

và DC=DB(cmt)

nên MD=MA+BD(đpcm)

Ta có: MA=MC(cmt)

nên M nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OA=OC(=R)

nên O nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra MO là đường trung trực của AC

hay MO⊥AC

Xét (O) có 

ΔABC nội tiếp đường tròn(A,C,B∈(O))

AB là đường kính của (O) 

Do đó: ΔABC vuông tại C(Định lí)

⇒CA⊥CB

Ta có: CA⊥CB(cmt)

MO⊥CA(cmt)

Do đó: BC//MO(Định lí 1 từ vuông góc tới song song)

Ta có: DC=DB(cmt)

nên D nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (3) và (4) suy ra OD là đường trung trực của BC

hay OD⊥BC

Ta có: BC//MO(cmt)

BC⊥OD(cmt)

Do đó: MO⊥OD(Định lí 2 từ vuông góc tới song song)

Xét ΔMOD có MO⊥OD(cmt)

nên ΔMOD vuông tại O(Định nghĩa tam giác vuông)

 

a: góc MAO+góc MCO=90+90=180 độ

=>MAOC nội tiếp

b: Xét (O) có

MA,MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên OM là trung trực của AC

=>OM vuông góc AC