Tính S=10.11+11.12+12.13+13.14+ ... +98.99+99.100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt : \(A=10.11+11.12+...+98.99+99.100\)
\(\Rightarrow3A=10.11.3+11.12.3+...+98.99.3+99.100.3\)
\(\Rightarrow3A=10.11.\left(12-9\right)+11.12.\left(13-10\right)+...+\)\(98.99.\left(100-97\right)+99.100.\left(101-98\right)\)
10.11+11.12+12.13+...+97.98+98.99+99.100
=10-11+11-12+12-13+...+97-98+98-99+99-100
=10-100
=-90
Đặt A = 10.11 + 11.12 + ... + 98.99 + 99.100
3A = 10.11.3 + 11.12.3 + ... + 98.99.3 + 99.100.3
3A = 10.11.(12 -9) + 11.12.(13-10) + ... + 98.99.(100 - 97) + 99.100.(101-98)
3A = 10.11.12 - 9.10.11 + 11.12.13 - 10.11.12 + ... + 98.99.100 - 97.98.99 + 99.100.101 - 98.99.100
3A = (10.11.12 + 11.12.13 + ... + 98.99.100 + 99.100.101) - (9.10.11 + 10.11.12 + ... + 97.98.99 + 98.99.100)
3A = 99.100.101 - 9.10.11
3A = 999799
A = 999799 : 3
Số số hạng là(99,100-10,11):0,01+1=8900
=>Tổng=8900:2x(10,11+99,100)=485984,5
\(\dfrac{3}{10.11}\) + \(\dfrac{3}{11.12}\) + \(\dfrac{3}{12.13}\) + \(\dfrac{3}{13.14}\) + \(\dfrac{3}{14.15}\)
= \(\dfrac{3}{10}\) - \(\dfrac{3}{11}\) + \(\dfrac{3}{11}\) - \(\dfrac{3}{12}\) + \(\dfrac{3}{12}\) - \(\dfrac{3}{13}\) + \(\dfrac{3}{13}\) - \(\dfrac{3}{14}\) + \(\dfrac{3}{14}\) - \(\dfrac{3}{15}\)
= \(\dfrac{3}{10}\) - \(\dfrac{3}{15}\) = \(\dfrac{1}{10}\)
\(\dfrac{3}{10.11}+\dfrac{3}{11.12}+\dfrac{3}{12.13}+\dfrac{3}{13.14}+\dfrac{3}{14.15}\)
\(=\dfrac{3}{1}.\left(\dfrac{3}{10}-\dfrac{3}{11}+\dfrac{3}{11}-\dfrac{3}{12}+\dfrac{3}{12}-\dfrac{3}{13}+\dfrac{3}{13}-\dfrac{3}{14}+\dfrac{3}{14}-\dfrac{3}{15}\right)\)
\(=\dfrac{3}{1}.\left(\dfrac{3}{10}-\dfrac{3}{15}\right)\)
\(=\dfrac{3}{1}.\left(\dfrac{9}{30}-\dfrac{6}{30}\right)\)
\(=\dfrac{3}{1}.\dfrac{1}{10}\)
\(=\dfrac{3}{10}\)
A= 5/10.11+5/11.12+5/12.13+5/13.14+5/14.15
A= (1/10.11+1/11.12+1/12.13+1/13.14+1/14.15) :5
A= [(1/10-1/11)+(1/11-1/12)+(1/12-1/13)+(1/13-1/14)+(1/14-1/15)] :5
A= (1/10-1/15):5
A= 1/30:5
A= 1/150
Ta có A=1/10.11+1/11.12+...+1/98.99+1/99.100
=1/10-1/11+1/11-1/12+...+1/98-1/99+1/99-1/100
=1/10-1/100
=10/100-1/100
=9/100
Vậy A=9/100
Giải:
A=1/10.11+1/11.12+...+1/98.99+1/99.100
A=1/10-1/11+1/11-1/12+...+1/98-1/99+1/99-1/100
A=1/10-1/100
A=9/100
Chúc bạn học tốt!
Lời giải:
$3S=10.11(12-9)+11.12(13-10)+12.13(14-11)+...+98.99(100-97)+99.100(101-98)$
$=(10.11.12+11.12.13+12.13.14+...+98.99.100+99.100.101)-(9.10.11+10.11.12+...+97.98.99+98.99.100)$
$=99.100.101-9.10.11$
$\Rightarrow S=\frac{99.100.101-9.10.11}{3}=33.100.101-3.10.11$