Cho ba a, b, c là ba cạnh của một tam giác. Chứng minh rằng:
\(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nguyễn hồng quân đấy là phim hành động nhé chứ không phải phim hoạt hình nhé bạn !!!
Vì a,b,c là độ dài ba cạnh của một tam giác nên ta có :
\(\begin{cases}a+b>c\\c+a>b\\b+c>a\end{cases}\) \(\Leftrightarrow\begin{cases}ac+bc>c^2\\ab+bc>b^2\\ab+ac>a^2\end{cases}\) \(\Rightarrow a^2+b^2+c^2>2\left(ab+bc+ac\right)\)
Ta có:
\(\left(a+b\right)^2\ge0\)
\(\Rightarrow a^2+2ab+b^2\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\) (1).
\(\left(b+c\right)^2\ge0\)
\(\Rightarrow b^2+2bc+c^2\ge0\)
\(\Rightarrow b^2+c^2\ge2bc\) (2).
\(\left(c+a\right)^2\ge0\)
\(\Rightarrow c^2+2ca+a^2\ge0\)
\(\Rightarrow c^2+a^2\ge2ac\) (3).
Cộng theo vế (1), (2) và (3) ta được:
\(a^2+b^2+b^2+c^2+a^2+c^2\ge2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2\ge2.\left(ab+bc+ca\right)\)
\(\Rightarrow2.\left(a^2+b^2+c^2\right)\ge2.\left(ab+bc+ca\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\) (*).
Vì a, b, c là độ dài ba cạnh của tam giác (gt).
\(\left\{{}\begin{matrix}a+b>c\\b+c>a\\c+a>b\end{matrix}\right.\) (theo bất đẳng thức trong tam giác).
=> \(\left\{{}\begin{matrix}ac+bc>c^2\left(4\right)\\ab+ac>a^2\left(5\right)\\bc+ab>b^2\left(6\right)\end{matrix}\right.\)
Cộng theo vế (4), (5) và (6) ta được:
\(ac+bc+ab+ac+bc+ab>a^2+b^2+c^2\)
\(\Rightarrow2ab+2bc+2ac>a^2+b^2+c^2\)
\(\Rightarrow2.\left(ab+bc+ca\right)>a^2+b^2+c^2\) (**).
Từ (*) và (**) => \(ab+bc+ca\le a^2+b^2+c^2< 2.\left(ab+bc+ca\right)\left(đpcm\right).\)
Chúc bạn học tốt!
Theo BĐTBĐT tam giác ta có:
a<b+c
=>a2<ab+ac
b<c+a
=>b2<bc+ba
c<a+b
=>c2<ca+cb
Cộng vế với vế 3 BĐT trên ta được:
a2+b2+c2<2(ab+bc+ca)(1)
Ta có (a−b)2+(b−c)2+(c−a)2≥0 với mọi a,b,c là độ dài 3 cạnh của tam giác
<=>a2−2ab+b2+b2−2bc+c2+c2−2ca+a2≥0
<=>2(a2+b2+c2)≥2(ab+bc+ca)
<=>ab+bc+ca≤a2+b2+c2(2)
Dấu = xảy ra khi a=b=c<=> tam giác đó đều
(1),(2)=>đpcm
Theo BĐT tam giác ta có:
\(\left\{{}\begin{matrix}a< b+c\\b< a+c\\c< a+b\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a^2< ab+ac\\b^2< ab+bc\\c^2< ac+bc\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+c^2< ab+bc+ca+ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)