Tính \(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}+\dfrac{1}{3}\right)....\left(1+\dfrac{1}{2}+...+\dfrac{1}{10}\right)\)
Ai giải nhanh mik tik
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}=\dfrac{1}{5}\)
\(=4.\left(-\dfrac{1}{8}\right)-2.\dfrac{1}{4}-\dfrac{3}{2}+1=\)
\(=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{3}{2}+1=-\dfrac{3}{2}\)
= 4 . -1/8 - 2 . -1/4 + 3 . -1/2 + 1
= -1/2 - -1/2 + -3/2 + 1
= -1/2
\(P=\dfrac{1}{3}-\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^3-\left(\dfrac{1}{3}\right)^4+...+\left(\dfrac{1}{3}\right)^{19}-\left(\dfrac{1}{3}\right)^{20}\)
\(=\left(\dfrac{1}{3}-\left(\dfrac{1}{3}\right)^2\right)+\left(\left(\dfrac{1}{3}\right)^3-\left(\dfrac{1}{4}\right)^4\right)+...+\left(\left(\dfrac{1}{3}\right)^{19}-\left(\dfrac{1}{3}\right)^{20}\right)\)
\(=\dfrac{1}{3}.\dfrac{2}{3}+\left(\dfrac{1}{3}\right)^3.\dfrac{2}{3}+...+\left(\dfrac{1}{3}\right)^{19}.\dfrac{2}{3}\)
\(=\dfrac{2}{3}.\left[\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^3+...+\left(\dfrac{1}{3}\right)^{19}\right]\)
\(...A=\left(-\dfrac{1}{2}\right).\left(-\dfrac{2}{3}\right).\left(-\dfrac{3}{4}\right)....\left(-\dfrac{1998}{1999}\right).\)
Số dấu trừ là : \(\left(1998-1\right):1+1=1998\) là số chẵn
\(\Rightarrow A=\dfrac{1.2.3...1998}{2.3.4...1999}\)
\(\Rightarrow A=\dfrac{1}{1999}\)
gợi ý nè
tính hết mấy cái hiệu trong ngoặc rồi nhân lại
vì kết thúc ở số 1999
nên sẽ có 1999 dấu -
nên kq là âm
nhân ra rồi triệt tiêu đi
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-1998}{1999}\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{1998}{1999}=\dfrac{1}{1999}\)
\(a.=\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{5}{3}+\dfrac{3}{2}+\dfrac{7}{3}-\dfrac{5}{2}=\dfrac{1+3-5}{2}-\dfrac{2+5-7}{3}=\dfrac{-1}{2}\)
\(b.\left(\dfrac{3}{4}-1\dfrac{1}{6}\right)^2:\sqrt{\dfrac{25}{144}}=\left(-\dfrac{5}{12}\right)^2:\dfrac{5}{12}=\dfrac{5}{12}\)
Bài 1:
a.
$|x+\frac{7}{4}|=\frac{1}{2}$
\(\Leftrightarrow \left[\begin{matrix} x+\frac{7}{4}=\frac{1}{2}\\ x+\frac{7}{4}=-\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-5}{4}\\ x=\frac{-9}{4}\end{matrix}\right.\)
b. $|2x+1|-\frac{2}{5}=\frac{1}{3}$
$|2x+1|=\frac{1}{3}+\frac{2}{5}$
$|2x+1|=\frac{11}{15}$
\(\Leftrightarrow \left[\begin{matrix} 2x+1=\frac{11}{15}\\ 2x+1=\frac{-11}{15}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-2}{15}\\ x=\frac{-13}{15}\end{matrix}\right.\)
c.
$3x(x+\frac{2}{3})=0$
\(\Leftrightarrow \left[\begin{matrix} 3x=0\\ x+\frac{2}{3}=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=0\\ x=\frac{-3}{2}\end{matrix}\right.\)
d.
$x+\frac{1}{3}=\frac{2}{5}-(\frac{-1}{3})=\frac{2}{5}+\frac{1}{3}$
$\Leftrightarrow x=\frac{2}{5}$
Nguyễn Quý Trung:
\(x+\dfrac{1}{3}=\dfrac{2}{5}+\dfrac{1}{3}\)
Bạn bớt 2 vế đi 1/3 thì \(x=\dfrac{2}{5}\)
Ta có: \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)\cdot...\cdot\left(1-\dfrac{1}{10^2}\right)\)
\(=\dfrac{-3}{4}\cdot\dfrac{-8}{9}\cdot\dfrac{-15}{16}\cdot...\cdot\dfrac{-99}{100}\)
\(=-\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{99}{100}\)
\(=-\dfrac{10+1}{2\cdot10}=\dfrac{-11}{20}\)
Phải thế này nha bạn!
\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{10^2}\right)\)
\(=\dfrac{2^2-1^2}{2^2}.\dfrac{3^2-1^2}{3^2}.\dfrac{4^2-1^2}{4^2}...\dfrac{10^2-1^2}{10^2}\)
\(=\dfrac{\left(2+1\right)\left(2-1\right)}{2.2}.\dfrac{\left(3+1\right)\left(3-1\right)}{3.3}.\dfrac{\left(4+1\right)\left(4-1\right)}{4.4}...\dfrac{\left(10+1\right)\left(10-1\right)}{10.10}\)
\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}...\dfrac{\left(10+1\right)\left(10-1\right)}{10.10}\)
\(=\dfrac{\left[1.2.3...\left(10+1\right)\right]\left[3.4.5...\left(10-1\right)\right]}{\left(2.3.4...10\right)\left(2.3.4...10\right)}\)
\(=\left(10+1\right).\dfrac{1}{2.10}\)
\(=\dfrac{11}{20}\)
Theo mình nghĩ phải như thế này.