K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

a,

\(\left(x+1\right)\left(x-3\right)< 0\)

\(\Rightarrow x+1\text{ và }x-3\text{ khác dấu và }x+1\ne0,x-3\ne0\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne3\end{matrix}\right.\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\\x-3< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>1\\x< 3\end{matrix}\right.\Rightarrow1< x< 3\\\left\{{}\begin{matrix}x+1< 0\\x-3>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< -1\\x>3\end{matrix}\right.\Rightarrow\text{mâu thuẫn}\end{matrix}\right.\)

Vậy \(1< x< 3\) thì \(\left(x+1\right)\left(x-3\right)< 0\)

b,

\(\dfrac{x+1}{x-4}>0\)

\(\Rightarrow x+1\text{ và }x-4\text{ cùng dấu và }x+1\ne0,x-4\ne0\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne4\end{matrix}\right.\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\\x-4>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>-1\\x>4\end{matrix}\right.\Rightarrow x>4\\\left\{{}\begin{matrix}x+1< 0\\x-4< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< -1\\x< 4\end{matrix}\right.\Rightarrow x< -1\end{matrix}\right.\)

Vậy khi \(x>4\) hoặc \(x< -1\) thì \(\dfrac{x+1}{x-4}>0\)

1 tháng 8 2017

\(\left(x+1\right)\left(x-3\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-3< 0\Rightarrow x< 3\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-3>0\Rightarrow x>3\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1< x< 3\)

\(\dfrac{x+1}{x-4}>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-4>0\Rightarrow x>4\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-4< 0\Rightarrow x< 4\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x>-1;x< 4\)

1 tháng 8 2017

Để ;(x + 1).(x - 3) < 0 thì ta có 2 trường hợp

Th1 : \(\hept{\begin{cases}x+1< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>3\end{cases}\left(loai\right)}}\)

Th2 : \(\hept{\begin{cases}x+1>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x< 3\end{cases}\Rightarrow}-1< x< 3}\)

13 tháng 10 2018

a) 5x.(x+3/4) = 0

=> x = 0

x+3/4 = 0 => x = -3/4

b) \(\frac{x+7}{2010}+\frac{x+6}{2011}=\frac{x+5}{2012}+\frac{x+4}{2013}.\)

\(\Rightarrow\frac{x+7}{2010}+\frac{x+6}{2011}-\frac{x+5}{2012}-\frac{x+4}{2013}=0\)

\(\frac{x+7}{2010}+1+\frac{x+6}{2011}+1-\frac{x+5}{2012}-1-\frac{x+4}{2013}-1=0\)

\(\left(\frac{x+7}{2010}+1\right)+\left(\frac{x+6}{2011}+1\right)-\left(\frac{x+5}{2012}+1\right)-\left(\frac{x+4}{2013}+1\right)=0\)

\(\frac{x+2017}{2010}+\frac{x+2017}{2011}-\frac{x+2017}{2012}-\frac{x+2017}{2013}=0\)

\(\left(x+2017\right).\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)

=> x + 2017 = 0

x = -2017

13 tháng 10 2018

a) để 2x - 3 > 0

=> 2x > 3

x > 3/2

b) 13-5x < 0

=> 5x < 13

x < 13/5

c) \(\frac{x+3}{2x-1}>0\)

=> x + 3 > 0

x > -3

d) \(\frac{x+7}{x+3}=\frac{x+3+4}{x+3}=1+\frac{4}{x+3}\)

Để x+7/x+3 < 1

=> 1 + 4/x+3 < 1

=> 4/x+3 < 0

=> không tìm được x thỏa mãn điều kiện

chem gio 

4 tháng 3 2017

sao lại chém gió

AH
Akai Haruma
Giáo viên
3 tháng 12 2021

Bạn thay giá trị $x$ của từng đáp án vô xem $x^2-8$ có lớn hơn $4x$ không thì đáp án đó đúng

Đáp án $x=6$ (C)

3 tháng 12 2021

thank you

1 tháng 8 2017

Hơi tắt nhá

a) Đặt \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=A\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)

mà A\(\le0\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\)​ phải bằng 0 đê thỏa mãn điều kiện

\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy....

b;c)I hệt câu a nên làm tương tự nhá

d)

Hơi tắt nhá

a) Đặt \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=B\)

B=\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\)

Thay ra ta tính đc :\(z=-\dfrac{11}{20}\)

Vậy....

1 tháng 8 2017

thanks bn nha

20 tháng 7 2021

a) \(A=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=3\)\(min_A=1\)

b) \(B=3x^2+x-2=3\left(x^2+\dfrac{1}{3}x-\dfrac{2}{3}\right)=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}-\dfrac{25}{36}\right)=3\left(x+\dfrac{1}{6}\right)^2-\dfrac{25}{12}\ge\dfrac{-25}{12}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{6}\)\(min_B=\dfrac{-25}{12}\)

c) \(C=\dfrac{4}{x^2}-\dfrac{3}{x}-1=\left(\dfrac{4}{x^2}-\dfrac{3}{x}+\dfrac{9}{16}\right)-\dfrac{25}{16}=\left(\dfrac{2}{x}+\dfrac{2}{3}\right)^2-\dfrac{25}{16}\ge\dfrac{-25}{16}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-3\)\(min_C=\dfrac{-25}{16}\)

d) \(D=x^2+y^2-x+3y+7=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+3y+\dfrac{9}{4}\right)+\dfrac{9}{2}=\left(x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-3}{2}\end{matrix}\right.\)\(min_D=\dfrac{9}{2}\)

15 tháng 3 2017

Vì | x -3 | > hoặc = 0

Suy ra : |x-3|+50 >hoặc =50

Vì A nhỏ nhất suy ra | x-3 | +50 =50

Suy ra x-3 =0

Suy ra x=3

Vậy GTNN của A = 50 khi x=3